PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o258–o259.
Published online 2009 January 8. doi:  10.1107/S1600536809000026
PMCID: PMC2968363

Bis{4-[(E)-2-(1H-indol-3-yl)ethen­yl]-1-methyl­pyridinium} 4-fluoro­benzene­sulfonate nitrate 0.25-hydrate1

Abstract

In the title compound, 2C16H15N2 +·C6H4FO3S·NO3 ·0.25H2O, the two cations are nearly planar, with dihedral angles of 1.34 (14) and 4.6 (2)°, respectively, between the pyridinium and indole rings. The cations each adopt E configurations with respect to the C=C bonds and are inclined to each other with a dihedral angle of 77.66 (5)°. The ethenyl group of one cation is disordered over two sites with occupancies of 0.685 (12) and 0.315 (12), and the sulfonate group of the 4-fluoro­benzene­sulfonate anion is also disordered with occupancies of 0.535 (10) and 0.465 (10) for the two sets of O atoms. The anion is also inclined to the two cations, with dihedral angles between the mean planes of the benzene ring and the π-conjugated systems of the cations of 24.72 (11) and 79.83 (11)°. In the crystal structure, the cations are stacked in an anti­parallel fashion into columns approximately along the a axis and are further linked through the anions into a three-dimensional network via N—H(...)O and C—H(...)O inter­actions. The water mol­ecule forms O—H(...)O hydrogen bonds to the nitrate anion and C—H(...)π inter­actions are also observed.

Related literature

For details of nonlinear optical materials, see, for example: Dittrich et al. (2003 [triangle]); Nogi et al. (2000 [triangle]); Oudar & LePerson (1975 [triangle]); Sato et al. (1999 [triangle]). For related structures, see, for example: Chantrapromma et al. (2006 [triangle], 2007 [triangle], 2008 [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o258-scheme1.jpg

Experimental

Crystal data

  • 2C16H15N2 +·C6H4FO3S·NO3 ·0.25H2O
  • M r = 712.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o258-efi1.jpg
  • a = 8.7750 (6) Å
  • b = 13.6366 (1) Å
  • c = 15.3190 (11) Å
  • α = 97.520 (1)°
  • β = 91.236 (1)°
  • γ = 99.861 (1)°
  • V = 1788.66 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.15 mm−1
  • T = 297 (2) K
  • 0.57 × 0.39 × 0.12 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer
  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996 [triangle]) T min = 0.919, T max = 0.982
  • 17243 measured reflections
  • 6287 independent reflections
  • 4818 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.063
  • wR(F 2) = 0.199
  • S = 1.03
  • 6287 reflections
  • 520 parameters
  • H-atom parameters constrained
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000026/sj2569sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000026/sj2569Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Prince of Songkla University for financial support and the Universiti Sains Malaysia for Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Much effort has been focused on the development of new materials with nonlinear optical properties. Organic molecules that exhibit second-order nonlinear optical properties usually consist of a framework involving a delocalized π system, end-capped with either a donor or acceptor substituent or both. Several organic compounds such as single crystals of 1-methyl-4-(2-(4-(dimethylamino)phenyl)ethynyl)pyridinium p-toluenesulfonate (DAST) and its analogues exhibit second-order nonlinear optical properties (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999). Oudar & LePerson (1975) examined the effect of conjugation length using a stilbene instead of a benzene π-system. In our continuing research on nonlinear optical materials (Chantrapromma et al., 2006, 2007, 2008), the title compound was synthesized as a conjugated π system NLO-chromophore and its crystal structure is reported here.

In the crystal structure of the title compound, the asymmetric unit consists of two C16H15N2+ cations, C6H4FO3S- and NO3- anions and a solvent water molecule with occupancy approximately 0.25 (Fig. 1). The two cations exist in E configurations with respect to the ethenyl unit and have slightly different bond lengths and angles. One cation [C7–C22/N1–N2] is almost planar whereas another cation [C23–C38/N3–N4] is slightly twisted as indicated by the dihedral angles between the pyridinium and indole rings of 1.32 (11)° in the former and 4.72 (16)° in the latter molecule. The ethenyl fragment (C28–C29) of one cation is disordered over two sites with occupancies 0.685 (12) and 0.315 (12) respectively (Fig. 1). The ethenyl unit is nearly planar with respect to the pyridinium and indole rings with the torsion angles C7—C11—C12—C13 = 0.0 (4)°; C12—C13—C14—C15 = -178.6 (3)° [for the C12–C13 ethenyl group] and C26—C27—C28A—C29A = 178.2 (4)°; C28A—C29A—C30—C31 = 176.9 (5)° and C26—C27—C28B—C29B = -3.5 (13)°; C28B—C29B—C30—C31 = -3.8 (13)° [for the C28–C29 ethenyl group]. The π conjugated systems of the two cations are inclined to each other with a dihedral angle of 77.66 (7)°. The sulfonate group of the 4-chlorobenzenesulfonate anion is also disordered with occupancies of 0.535 (10) and 0.465 (10) for the two sets of O atoms (Fig. 1). The anion is inclined to the two cations with dihedral angles between the mean planes of the C1–C6 benzene ring and the π conjugated system of the cations of 24.72 (11)° [for C7–C21/N1–N2] and 79.83 (11)° [for C23–C37/N3–N4]. Bond lengths in the compound are in normal ranges (Allen et al., 1987).

In the crystal structure (Fig. 2), the cations are stacked in an antiparallel fashion into columns approximately along the a axis and are further linked by anions into a three-dimensional network via N—H···O and C—H···O interactions. Water molecules link to the NO3- anions by O—H···O hydrogen bonds (Table 1, Fig. 2). The crystal was stabilized by N—H···O, O—H···O, C—H···O and C—H···π interactions (Table 1); Cg1; Cg2 and Cg3 are the centroids of the N4/C30–C32/C37, C32–C37 and C16–C21 rings, respectively.

Experimental

4-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium iodide (compound A) was synthesized from a mixture (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.00 g, 8.51 mmol), indole-3-carboxaldehyde (1.24 g, 8.51 mmol) and piperidine (0.84 ml, 8.51 mmol) in methanol (40 ml) under reflux for 2 h under a nitrogen atmosphere. The solid which formed was filtered, washed with ether and recrystallized from methanol to give orange single crystals of compound A after several days. The title compound was synthesized by mixing compound A (0.72 g, 2.0 mmol) in hot methanol (30 ml) and silver(I) 4-fluorobenzenesulfonate (0.57 g, 2.0 mmol) in hot methanol (20 ml). The mixture turned yellow and immediately yielded a gray precipitate of silver iodide. After stirring the mixture for ca 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated to yield an orange solid. Orange block-shaped single crystals of the title compound suitable for X-ray structure determination were recrystallized from methanol by slow evaporation of the solvent at room temperature after several days.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.85 Å, N—H = 0.86 Å, Caryl—H = 0.93 Å and Cmethyl—H = 0.96 Å. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 1.02 Å from F1 and the deepest hole is located at 0.95 Å from O4.

The ethenyl group of one cation is disordered over two sites with occupancies 0.685 (12) and 0.315 (12) respectively. A close H···H contact involving a H atom in this disordered group suggests that the disorder should extend to the whole cation molecule. However we were not successful in generating a complete disorder model and could only successfully model the local disorder in the ethenyl fragment of the molecule. The sulfonate group of the 4-fluorobenzenesulfonate anion is also disordered with occupancies of 0.535 (10) and 0.465 (10) for the two sets of O atoms.

Figures

Fig. 1.
The structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme. Atoms of the major and minor disorder components are joined with solid and open bonds, respectively.
Fig. 2.
The packing diagram of (I) viewed along the b axis. Hydrogen bonds were drawn as dashed lines and atoms of the minor disorder components are not shown.

Crystal data

2C16H15N2+·C6H4FO3S·NO3·0.25H2OZ = 2
Mr = 712.27F(000) = 745
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7750 (6) ÅCell parameters from 6287 reflections
b = 13.6366 (1) Åθ = 1.3–25.0°
c = 15.3190 (11) ŵ = 0.15 mm1
α = 97.520 (1)°T = 297 K
β = 91.236 (1)°Plate, orange
γ = 99.861 (1)°0.57 × 0.39 × 0.12 mm
V = 1788.66 (18) Å3

Data collection

Siemens SMART CCD area-detector diffractometer6287 independent reflections
Radiation source: fine-focus sealed tube4818 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 25.0°, θmin = 1.3°
ω scansh = −10→10
Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 1996)k = −16→16
Tmin = 0.919, Tmax = 0.982l = −18→18
17243 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.1048P)2 + 0.7458P] where P = (Fo2 + 2Fc2)/3
6287 reflections(Δ/σ)max < 0.001
520 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F10.8301 (3)0.53738 (13)0.13528 (13)0.1070 (7)
S10.74535 (14)0.96215 (6)0.30690 (6)0.0943 (4)
O1A0.7947 (14)0.9676 (5)0.3874 (4)0.128 (4)0.535 (10)
O2A0.5540 (7)0.9537 (4)0.3014 (6)0.122 (3)0.535 (10)
O3A0.7858 (15)1.0287 (7)0.2507 (7)0.117 (4)0.535 (10)
O1B0.6669 (17)0.9575 (5)0.3770 (7)0.148 (7)0.465 (10)
O2B0.7404 (16)1.0297 (9)0.2476 (7)0.106 (4)0.465 (10)
O3B0.9324 (9)1.0071 (5)0.3454 (6)0.123 (3)0.465 (10)
O40.7248 (4)0.3823 (2)0.8149 (2)0.1299 (11)
O50.7224 (8)0.3889 (4)0.9475 (3)0.241 (3)
O60.6872 (4)0.2501 (2)0.8724 (3)0.1355 (12)
N11.1622 (3)0.86382 (16)0.41062 (15)0.0630 (6)
N20.7682 (3)0.22728 (16)0.34872 (16)0.0698 (6)
H1N20.76860.16770.32230.084*
N30.4743 (3)1.1617 (2)1.09022 (17)0.0769 (7)
N4−0.1419 (3)0.6053 (2)0.88513 (19)0.0872 (8)
H1N4−0.17240.54310.89040.105*
N50.7084 (3)0.3399 (2)0.8801 (2)0.0836 (7)
C10.7643 (3)0.84191 (19)0.25284 (17)0.0626 (7)
C20.9019 (4)0.8268 (2)0.21795 (19)0.0722 (8)
H2A0.98350.88060.21950.087*
C30.9200 (4)0.7333 (3)0.1809 (2)0.0806 (9)
H3A1.01390.72390.15710.097*
C40.8020 (4)0.6533 (2)0.1782 (2)0.0771 (8)
C50.6630 (4)0.6681 (2)0.2113 (2)0.0877 (10)
H5A0.58140.61420.20890.105*
C60.6433 (4)0.7629 (2)0.2484 (2)0.0800 (9)
H6A0.54830.77310.27030.096*
C71.1090 (3)0.6898 (2)0.36194 (18)0.0651 (7)
H7A1.13160.63500.32480.078*
C81.1910 (3)0.7838 (2)0.35711 (19)0.0686 (7)
H8A1.26740.79220.31630.082*
C91.0525 (3)0.8512 (2)0.46932 (19)0.0674 (7)
H9A1.03340.90670.50680.081*
C100.9685 (3)0.75962 (19)0.47560 (19)0.0646 (7)
H10A0.89300.75360.51720.078*
C110.9924 (3)0.67502 (18)0.42152 (16)0.0547 (6)
C120.9001 (3)0.57771 (19)0.42901 (17)0.0595 (6)
H12A0.82480.57540.47080.071*
C130.9144 (3)0.49223 (19)0.38127 (18)0.0618 (6)
H13A0.98930.49680.33930.074*
C140.8305 (3)0.39367 (18)0.38538 (17)0.0577 (6)
C150.8606 (4)0.3107 (2)0.33221 (19)0.0696 (7)
H15A0.93560.31240.29020.084*
C160.6722 (3)0.25210 (18)0.41484 (18)0.0584 (6)
C170.5603 (3)0.1904 (2)0.4537 (2)0.0702 (8)
H17A0.54000.12130.43630.084*
C180.4800 (3)0.2348 (2)0.5189 (2)0.0785 (9)
H18A0.40330.19520.54610.094*
C190.5115 (3)0.3387 (2)0.5452 (2)0.0762 (8)
H19A0.45500.36690.58940.091*
C200.6248 (3)0.3999 (2)0.50683 (18)0.0626 (7)
H20A0.64550.46880.52520.075*
C210.7077 (3)0.35702 (17)0.44012 (16)0.0529 (6)
C221.2493 (5)0.9649 (2)0.4041 (3)0.0987 (11)
H22A1.27231.00150.46220.148*
H22B1.18811.00000.37050.148*
H22C1.34410.95910.37540.148*
C230.3467 (6)0.9948 (3)1.0839 (4)0.1117 (15)
H23A0.33360.93471.10750.134*
C240.4531 (5)1.0744 (3)1.1227 (2)0.0925 (10)
H24A0.51141.06771.17230.111*
C250.3890 (4)1.1693 (3)1.0182 (2)0.0797 (8)
H25A0.40301.22970.99500.096*
C260.2841 (4)1.0915 (3)0.9792 (2)0.0863 (10)
H26A0.22781.09980.92930.104*
C270.2572 (4)1.0021 (3)1.0093 (3)0.0964 (11)
C28A0.1315 (7)0.9283 (6)0.9502 (4)0.077 (2)0.685 (12)
H28A0.08480.94990.90280.093*0.685 (12)
C29A0.0901 (6)0.8359 (5)0.9661 (4)0.075 (2)0.685 (12)
H29A0.13470.81761.01580.090*0.685 (12)
C28B0.1802 (10)0.8954 (7)1.0036 (6)0.052 (3)0.315 (12)
H28B0.19800.85051.04190.062*0.315 (12)
C29B0.0751 (16)0.8741 (10)0.9296 (8)0.057 (3)0.315 (12)
H29B0.06110.92180.89330.068*0.315 (12)
C30−0.0168 (4)0.7624 (3)0.9137 (2)0.0847 (10)
C31−0.0391 (4)0.6689 (3)0.9388 (2)0.0946 (10)
H31A0.01110.65200.98730.114*
C32−0.1923 (3)0.6535 (2)0.81984 (19)0.0657 (7)
C33−0.2938 (3)0.6159 (2)0.7491 (2)0.0756 (8)
H33A−0.34210.54890.74020.091*
C34−0.3209 (4)0.6814 (3)0.6919 (2)0.0849 (9)
H34A−0.38870.65840.64320.102*
C35−0.2491 (4)0.7807 (3)0.7056 (2)0.0885 (10)
H35A−0.27020.82340.66600.106*
C36−0.1480 (4)0.8182 (2)0.7758 (2)0.0803 (9)
H36A−0.10040.88530.78400.096*
C37−0.1175 (3)0.7536 (2)0.83492 (19)0.0661 (7)
C380.5860 (4)1.2495 (3)1.1315 (3)0.1201 (15)
H38A0.61531.29391.08870.180*
H38B0.67611.22761.15320.180*
H38C0.53931.28421.17950.180*
O1W0.4653 (13)0.4288 (9)0.0301 (9)0.128 (4)0.25
H1W10.55290.46190.05000.192*0.25
H2W10.43510.4572−0.01160.192*0.25

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.168 (2)0.0544 (10)0.1004 (14)0.0473 (11)0.0094 (13)−0.0183 (9)
S10.1704 (10)0.0472 (4)0.0706 (5)0.0300 (5)0.0304 (6)0.0093 (3)
O1A0.230 (11)0.084 (4)0.065 (4)0.053 (7)−0.043 (6)−0.029 (3)
O2A0.100 (4)0.093 (4)0.177 (7)0.043 (3)0.034 (4)−0.013 (4)
O3A0.190 (9)0.040 (3)0.126 (7)0.019 (4)0.081 (6)0.027 (4)
O1B0.252 (14)0.067 (4)0.139 (10)0.049 (7)0.138 (11)0.020 (5)
O2B0.168 (8)0.079 (5)0.078 (5)0.062 (5)−0.045 (6)−0.007 (4)
O3B0.114 (5)0.083 (4)0.153 (6)0.002 (4)−0.037 (5)−0.029 (4)
O40.135 (2)0.110 (2)0.156 (3)0.0253 (18)0.055 (2)0.045 (2)
O50.396 (8)0.236 (5)0.098 (3)0.138 (5)−0.060 (4)−0.045 (3)
O60.124 (2)0.086 (2)0.203 (3)0.0166 (17)−0.014 (2)0.050 (2)
N10.0650 (13)0.0505 (12)0.0690 (14)−0.0022 (10)−0.0069 (11)0.0094 (10)
N20.0892 (16)0.0444 (12)0.0731 (15)0.0114 (11)0.0006 (13)−0.0007 (10)
N30.0627 (14)0.0909 (19)0.0725 (15)0.0172 (13)0.0045 (12)−0.0102 (14)
N40.0919 (19)0.0847 (18)0.0885 (18)0.0187 (15)−0.0002 (15)0.0213 (15)
N50.0857 (18)0.087 (2)0.0799 (19)0.0249 (15)−0.0081 (14)0.0076 (16)
C10.0860 (19)0.0502 (14)0.0534 (14)0.0155 (13)0.0096 (13)0.0077 (11)
C20.0700 (18)0.0675 (18)0.0755 (18)0.0049 (14)0.0007 (14)0.0067 (14)
C30.0766 (19)0.088 (2)0.081 (2)0.0330 (18)0.0066 (16)0.0031 (17)
C40.103 (2)0.0663 (18)0.0633 (17)0.0322 (17)−0.0080 (16)−0.0074 (14)
C50.090 (2)0.0594 (18)0.103 (2)−0.0051 (16)0.0003 (19)−0.0035 (16)
C60.0766 (19)0.0626 (18)0.100 (2)0.0125 (15)0.0224 (17)0.0054 (16)
C70.0765 (17)0.0536 (15)0.0646 (16)0.0145 (13)−0.0014 (13)0.0022 (12)
C80.0648 (16)0.0740 (18)0.0664 (17)0.0049 (14)0.0057 (13)0.0167 (14)
C90.0754 (18)0.0527 (15)0.0713 (17)0.0084 (13)0.0003 (14)0.0022 (13)
C100.0665 (16)0.0540 (15)0.0731 (17)0.0088 (12)0.0069 (13)0.0093 (13)
C110.0557 (14)0.0518 (13)0.0574 (14)0.0090 (11)−0.0035 (11)0.0118 (11)
C120.0600 (14)0.0564 (15)0.0632 (15)0.0117 (12)0.0060 (12)0.0092 (12)
C130.0671 (16)0.0531 (14)0.0650 (16)0.0083 (12)0.0042 (12)0.0101 (12)
C140.0625 (15)0.0491 (13)0.0623 (15)0.0114 (11)0.0002 (12)0.0088 (11)
C150.0844 (19)0.0546 (15)0.0704 (17)0.0140 (14)0.0131 (14)0.0063 (13)
C160.0588 (14)0.0470 (13)0.0687 (16)0.0062 (11)−0.0120 (12)0.0118 (11)
C170.0646 (16)0.0535 (15)0.090 (2)0.0000 (13)−0.0104 (15)0.0178 (14)
C180.0594 (16)0.078 (2)0.099 (2)−0.0031 (14)0.0003 (16)0.0362 (18)
C190.0650 (17)0.083 (2)0.085 (2)0.0186 (15)0.0117 (15)0.0205 (16)
C200.0607 (15)0.0543 (14)0.0749 (17)0.0139 (12)0.0018 (13)0.0114 (13)
C210.0534 (13)0.0437 (12)0.0616 (14)0.0092 (10)−0.0073 (11)0.0080 (10)
C220.111 (3)0.0634 (19)0.108 (3)−0.0272 (18)−0.002 (2)0.0177 (18)
C230.123 (3)0.077 (2)0.151 (4)0.038 (2)0.073 (3)0.034 (3)
C240.100 (3)0.112 (3)0.081 (2)0.050 (2)0.0186 (19)0.025 (2)
C250.081 (2)0.080 (2)0.081 (2)0.0189 (16)0.0132 (17)0.0112 (16)
C260.0677 (19)0.104 (3)0.080 (2)0.0116 (18)−0.0010 (16)−0.0069 (19)
C270.076 (2)0.088 (3)0.118 (3)0.0099 (19)0.033 (2)−0.014 (2)
C28A0.085 (4)0.074 (4)0.076 (4)0.023 (3)0.010 (3)0.006 (3)
C29A0.075 (4)0.086 (4)0.066 (3)0.027 (3)0.007 (3)0.003 (3)
C28B0.056 (6)0.052 (5)0.050 (5)0.011 (4)−0.001 (4)0.014 (4)
C29B0.084 (8)0.055 (7)0.045 (6)0.033 (6)0.016 (5)0.025 (5)
C300.0618 (18)0.099 (3)0.084 (2)0.0144 (17)0.0064 (16)−0.0212 (19)
C310.094 (2)0.110 (3)0.081 (2)0.032 (2)−0.0093 (19)0.002 (2)
C320.0613 (15)0.0689 (17)0.0699 (17)0.0166 (13)0.0105 (13)0.0125 (14)
C330.0676 (17)0.0706 (18)0.086 (2)0.0096 (14)0.0013 (15)0.0058 (16)
C340.082 (2)0.096 (2)0.078 (2)0.0226 (18)−0.0103 (16)0.0067 (18)
C350.106 (3)0.076 (2)0.091 (2)0.0263 (19)0.007 (2)0.0215 (18)
C360.081 (2)0.0619 (17)0.097 (2)0.0138 (15)0.0205 (18)0.0027 (16)
C370.0591 (15)0.0723 (18)0.0669 (16)0.0160 (13)0.0166 (13)0.0017 (14)
C380.083 (2)0.132 (3)0.124 (3)0.006 (2)0.000 (2)−0.044 (3)
O1W0.091 (7)0.134 (10)0.159 (11)0.018 (7)0.018 (7)0.022 (8)

Geometric parameters (Å, °)

F1—C41.692 (3)C16—C171.378 (4)
S1—O1A1.287 (6)C16—C211.411 (3)
S1—O1B1.291 (6)C17—C181.371 (4)
S1—O3A1.340 (8)C17—H17A0.9300
S1—O2B1.381 (11)C18—C191.398 (4)
S1—O2A1.662 (6)C18—H18A0.9300
S1—O3B1.714 (7)C19—C201.378 (4)
S1—C11.774 (3)C19—H19A0.9300
O4—N51.217 (4)C20—C211.392 (4)
O5—N51.145 (4)C20—H20A0.9300
O6—N51.197 (4)C22—H22A0.9600
N1—C91.336 (4)C22—H22B0.9600
N1—C81.340 (4)C22—H22C0.9600
N1—C221.474 (3)C23—C241.365 (6)
N2—C151.336 (4)C23—C271.396 (6)
N2—C161.376 (4)C23—H23A0.9300
N2—H1N20.8600C24—H24A0.9300
N3—C241.336 (5)C25—C261.345 (5)
N3—C251.344 (4)C25—H25A0.9300
N3—C381.471 (4)C26—C271.345 (5)
N4—C311.324 (4)C26—H26A0.9300
N4—C321.371 (4)C27—C28B1.487 (10)
N4—H1N40.8600C27—C28A1.546 (8)
C1—C21.368 (4)C28A—C29A1.306 (12)
C1—C61.370 (4)C28A—H28A0.9300
C2—C31.363 (4)C29A—C301.402 (7)
C2—H2A0.9300C29A—H29A0.9300
C3—C41.365 (5)C28B—C29B1.41 (2)
C3—H3A0.9300C28B—H28B0.9300
C4—C51.367 (5)C29B—C301.583 (15)
C5—C61.383 (4)C29B—H29B0.9300
C5—H5A0.9300C30—C311.364 (5)
C6—H6A0.9300C30—C371.459 (4)
C7—C81.370 (4)C31—H31A0.9300
C7—C111.392 (4)C32—C331.374 (4)
C7—H7A0.9300C32—C371.397 (4)
C8—H8A0.9300C33—C341.376 (4)
C9—C101.353 (4)C33—H33A0.9300
C9—H9A0.9300C34—C351.379 (5)
C10—C111.379 (4)C34—H34A0.9300
C10—H10A0.9300C35—C361.364 (5)
C11—C121.451 (3)C35—H35A0.9300
C12—C131.319 (4)C36—C371.396 (4)
C12—H12A0.9300C36—H36A0.9300
C13—C141.428 (4)C38—H38A0.9600
C13—H13A0.9300C38—H38B0.9600
C14—C151.373 (4)C38—H38C0.9600
C14—C211.441 (4)O1W—H1W10.8500
C15—H15A0.9300O1W—H2W10.8500
O1A—S1—O1B51.1 (5)C18—C17—C16117.4 (3)
O1A—S1—O3A127.5 (7)C18—C17—H17A121.3
O1B—S1—O3A137.3 (6)C16—C17—H17A121.3
O1A—S1—O2B135.5 (6)C17—C18—C19121.1 (3)
O1B—S1—O2B125.9 (7)C17—C18—H18A119.4
O1A—S1—O2A110.4 (6)C19—C18—H18A119.4
O1B—S1—O2A59.4 (6)C20—C19—C18121.2 (3)
O3A—S1—O2A100.2 (6)C20—C19—H19A119.4
O2B—S1—O2A83.2 (6)C18—C19—H19A119.4
O1A—S1—O3B55.1 (5)C19—C20—C21119.0 (3)
O1B—S1—O3B104.6 (7)C19—C20—H20A120.5
O3A—S1—O3B80.9 (6)C21—C20—H20A120.5
O2B—S1—O3B96.4 (6)C20—C21—C16118.3 (2)
O2A—S1—O3B157.3 (3)C20—C21—C14135.6 (2)
O1A—S1—C1107.2 (3)C16—C21—C14106.1 (2)
O1B—S1—C1112.7 (3)N1—C22—H22A109.5
O3A—S1—C1107.6 (5)N1—C22—H22B109.5
O2B—S1—C1111.5 (5)H22A—C22—H22B109.5
O2A—S1—C1100.7 (2)N1—C22—H22C109.5
O3B—S1—C1100.5 (2)H22A—C22—H22C109.5
C9—N1—C8119.3 (2)H22B—C22—H22C109.5
C9—N1—C22120.3 (3)C24—C23—C27121.2 (4)
C8—N1—C22120.4 (3)C24—C23—H23A119.4
C15—N2—C16109.0 (2)C27—C23—H23A119.4
C15—N2—H1N2125.5N3—C24—C23120.7 (4)
C16—N2—H1N2125.5N3—C24—H24A119.6
C24—N3—C25118.5 (3)C23—C24—H24A119.6
C24—N3—C38122.0 (4)N3—C25—C26121.5 (3)
C25—N3—C38119.5 (3)N3—C25—H25A119.3
C31—N4—C32109.9 (3)C26—C25—H25A119.3
C31—N4—H1N4125.0C27—C26—C25122.6 (4)
C32—N4—H1N4125.0C27—C26—H26A118.7
O5—N5—O6122.5 (5)C25—C26—H26A118.7
O5—N5—O4117.6 (5)C26—C27—C23115.6 (4)
O6—N5—O4119.8 (4)C26—C27—C28B152.5 (6)
C2—C1—C6119.6 (3)C23—C27—C28B91.9 (5)
C2—C1—S1120.0 (2)C26—C27—C28A110.3 (5)
C6—C1—S1120.3 (2)C23—C27—C28A134.2 (5)
C3—C2—C1120.3 (3)C29A—C28A—C27120.6 (6)
C3—C2—H2A119.9C29A—C28A—H28A119.7
C1—C2—H2A119.9C27—C28A—H28A119.7
C2—C3—C4120.8 (3)C28A—C29A—C30124.6 (7)
C2—C3—H3A119.6C28A—C29A—H29A117.7
C4—C3—H3A119.6C30—C29A—H29A117.7
C3—C4—C5119.3 (3)C29B—C28B—C27107.8 (9)
C3—C4—F1119.7 (3)C29B—C28B—H28B126.1
C5—C4—F1120.9 (3)C27—C28B—H28B126.1
C4—C5—C6120.2 (3)C28B—C29B—C30114.3 (10)
C4—C5—H5A119.9C28B—C29B—H29B122.8
C6—C5—H5A119.9C30—C29B—H29B122.8
C1—C6—C5119.7 (3)C31—C30—C29A115.9 (5)
C1—C6—H6A120.1C31—C30—C37105.4 (3)
C5—C6—H6A120.1C29A—C30—C37138.7 (5)
C8—C7—C11121.0 (3)C31—C30—C29B147.6 (6)
C8—C7—H7A119.5C37—C30—C29B106.9 (6)
C11—C7—H7A119.5N4—C31—C30111.1 (3)
N1—C8—C7120.7 (3)N4—C31—H31A124.5
N1—C8—H8A119.7C30—C31—H31A124.5
C7—C8—H8A119.7N4—C32—C33129.5 (3)
N1—C9—C10121.7 (3)N4—C32—C37107.6 (3)
N1—C9—H9A119.2C33—C32—C37122.8 (3)
C10—C9—H9A119.2C32—C33—C34117.2 (3)
C9—C10—C11121.3 (3)C32—C33—H33A121.4
C9—C10—H10A119.3C34—C33—H33A121.4
C11—C10—H10A119.3C33—C34—C35121.0 (3)
C10—C11—C7115.9 (2)C33—C34—H34A119.5
C10—C11—C12120.4 (2)C35—C34—H34A119.5
C7—C11—C12123.7 (2)C36—C35—C34121.9 (3)
C13—C12—C11125.3 (3)C36—C35—H35A119.1
C13—C12—H12A117.4C34—C35—H35A119.1
C11—C12—H12A117.4C35—C36—C37118.6 (3)
C12—C13—C14128.8 (3)C35—C36—H36A120.7
C12—C13—H13A115.6C37—C36—H36A120.7
C14—C13—H13A115.6C36—C37—C32118.5 (3)
C15—C14—C13122.2 (3)C36—C37—C30135.4 (3)
C15—C14—C21105.9 (2)C32—C37—C30106.0 (3)
C13—C14—C21131.9 (2)N3—C38—H38A109.5
N2—C15—C14111.1 (3)N3—C38—H38B109.5
N2—C15—H15A124.4H38A—C38—H38B109.5
C14—C15—H15A124.4N3—C38—H38C109.5
N2—C16—C17129.2 (3)H38A—C38—H38C109.5
N2—C16—C21107.9 (2)H38B—C38—H38C109.5
C17—C16—C21123.0 (3)H1W1—O1W—H2W1107.7
O1A—S1—C1—C2−85.3 (6)C15—C14—C21—C20179.7 (3)
O1B—S1—C1—C2−139.6 (8)C13—C14—C21—C200.6 (5)
O3A—S1—C1—C254.9 (6)C15—C14—C21—C16−0.2 (3)
O2B—S1—C1—C272.4 (7)C13—C14—C21—C16−179.2 (3)
O2A—S1—C1—C2159.3 (4)C25—N3—C24—C23−0.3 (5)
O3B—S1—C1—C2−28.8 (4)C38—N3—C24—C23178.8 (3)
O1A—S1—C1—C692.5 (6)C27—C23—C24—N30.0 (5)
O1B—S1—C1—C638.2 (8)C24—N3—C25—C260.1 (4)
O3A—S1—C1—C6−127.4 (7)C38—N3—C25—C26−179.0 (3)
O2B—S1—C1—C6−109.8 (7)N3—C25—C26—C270.3 (5)
O2A—S1—C1—C6−23.0 (4)C25—C26—C27—C23−0.5 (5)
O3B—S1—C1—C6149.0 (4)C25—C26—C27—C28B−175.9 (8)
C6—C1—C2—C3−1.6 (5)C25—C26—C27—C28A−179.6 (3)
S1—C1—C2—C3176.2 (2)C24—C23—C27—C260.4 (5)
C1—C2—C3—C4−0.3 (5)C24—C23—C27—C28B178.2 (4)
C2—C3—C4—C51.6 (5)C24—C23—C27—C28A179.2 (4)
C2—C3—C4—F1−177.7 (2)C26—C27—C28A—C29A178.2 (4)
C3—C4—C5—C6−1.1 (5)C23—C27—C28A—C29A−0.7 (8)
F1—C4—C5—C6178.2 (3)C28B—C27—C28A—C29A0.7 (5)
C2—C1—C6—C52.1 (5)C27—C28A—C29A—C30−176.6 (4)
S1—C1—C6—C5−175.7 (3)C26—C27—C28B—C29B−3.5 (13)
C4—C5—C6—C1−0.8 (5)C23—C27—C28B—C29B−179.3 (6)
C9—N1—C8—C70.2 (4)C28A—C27—C28B—C29B1.7 (6)
C22—N1—C8—C7−179.1 (3)C27—C28B—C29B—C30179.7 (6)
C11—C7—C8—N10.9 (4)C28A—C29A—C30—C31176.9 (5)
C8—N1—C9—C10−0.7 (4)C28A—C29A—C30—C37−2.4 (8)
C22—N1—C9—C10178.6 (3)C28A—C29A—C30—C29B0.9 (8)
N1—C9—C10—C110.0 (4)C28B—C29B—C30—C31−3.8 (13)
C9—C10—C11—C71.0 (4)C28B—C29B—C30—C29A2.9 (5)
C9—C10—C11—C12−179.6 (2)C28B—C29B—C30—C37−179.3 (6)
C8—C7—C11—C10−1.4 (4)C32—N4—C31—C300.9 (4)
C8—C7—C11—C12179.1 (2)C29A—C30—C31—N4−180.0 (3)
C10—C11—C12—C13−179.4 (3)C37—C30—C31—N4−0.5 (4)
C7—C11—C12—C130.0 (4)C29B—C30—C31—N4−176.0 (7)
C11—C12—C13—C14178.9 (2)C31—N4—C32—C33177.5 (3)
C12—C13—C14—C15−178.6 (3)C31—N4—C32—C37−0.8 (4)
C12—C13—C14—C210.4 (5)N4—C32—C33—C34−178.3 (3)
C16—N2—C15—C14−0.3 (3)C37—C32—C33—C34−0.2 (4)
C13—C14—C15—N2179.5 (2)C32—C33—C34—C35−0.2 (5)
C21—C14—C15—N20.3 (3)C33—C34—C35—C360.4 (5)
C15—N2—C16—C17−179.1 (3)C34—C35—C36—C37−0.1 (5)
C15—N2—C16—C210.2 (3)C35—C36—C37—C32−0.2 (4)
N2—C16—C17—C18−180.0 (3)C35—C36—C37—C30177.6 (3)
C21—C16—C17—C180.8 (4)N4—C32—C37—C36178.9 (3)
C16—C17—C18—C19−0.4 (4)C33—C32—C37—C360.4 (4)
C17—C18—C19—C20−0.3 (5)N4—C32—C37—C300.5 (3)
C18—C19—C20—C210.6 (4)C33—C32—C37—C30−178.0 (3)
C19—C20—C21—C16−0.2 (4)C31—C30—C37—C36−178.0 (3)
C19—C20—C21—C14180.0 (3)C29A—C30—C37—C361.3 (7)
N2—C16—C21—C20−179.9 (2)C29B—C30—C37—C36−0.5 (6)
C17—C16—C21—C20−0.5 (4)C31—C30—C37—C320.0 (3)
N2—C16—C21—C140.0 (3)C29A—C30—C37—C32179.3 (4)
C17—C16—C21—C14179.4 (2)C29B—C30—C37—C32177.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O3Ai0.862.092.950 (10)175
N4—H1N4···O4ii0.862.363.106 (4)145
N4—H1N4···O5ii0.862.433.259 (6)163
O1W—H1W1···O5iii0.852.422.711 (14)101
C6—H6A···O2A0.932.442.866 (7)108
C7—H7A···O4iv0.932.513.224 (4)134
C9—H9A···O1Av0.932.473.169 (8)132
C22—H22A···O1Av0.962.393.256 (8)149
C22—H22C···O2Avi0.962.193.147 (8)175
C23—H23A···O6vii0.932.553.456 (5)164
C15—H15A···Cg1viii0.932.993.896 (3)164
C15—H15A···Cg2viii0.932.723.563 (4)151
C34—H34A···Cg3ix0.932.783.595 (4)147
C38—H38C···Cg2x0.962.953.695 (4)135

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) x, y, z−1; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y+2, −z+1; (vi) x+1, y, z; (vii) −x+1, −y+1, −z+2; (viii) −x+1, −y+1, −z+1; (ix) −x, −y+1, −z+1; (x) −x, −y+2, −z+2.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2569).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst. E62, o1802–o1804.
  • Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2007). Anal. Sci.23, x27–x28.
  • Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877. [PMC free article] [PubMed]
  • Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci.220, 88–95.
  • Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Opt.24, 35–40.
  • Oudar, J. L. & LePerson, H. (1975). Opt. Commun.15, 258–262.
  • Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met.101, 132–133.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography