PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o223.
Published online 2009 January 8. doi:  10.1107/S1600536808043511
PMCID: PMC2968353

1,4-Bis(6-chloro­pyrimidin-4-yl­oxy)benzene

Abstract

In the title compound, C14H8Cl2N4O2, all atoms of the 6-chloro­pyrimidin-4-yl­oxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal structure is stabilized by weak C—H(...)O and C—H(...)N hydrogen bonds.

Related literature

For background information, see: Halim et al. (1999 [triangle]); Meng & Huang (2000 [triangle]); Maes et al. (2003 [triangle]); Friend et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o223-scheme1.jpg

Experimental

Crystal data

  • C14H8Cl2N4O2
  • M r = 335.14
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o223-efi1.jpg
  • a = 19.0760 (5) Å
  • b = 6.9693 (2) Å
  • c = 10.7893 (3) Å
  • β = 93.301 (3)°
  • V = 1432.02 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.47 mm−1
  • T = 298 (2) K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: none
  • 6918 measured reflections
  • 1372 independent reflections
  • 1156 reflections with I > 2σ(I)’
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.105
  • S = 1.07
  • 1372 reflections
  • 128 parameters
  • H-atom parameters constrained
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043511/lh2746sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043511/lh2746Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by Henan Education Government of China (grant No. 2006150023).

supplementary crystallographic information

Comment

In recent publications it has been shown that polymers consisting of heterocyclic building blocks can be used in organic light-emitting diodes (LEDs) because of their electroluminescent properties. (Halim et al., 1999; Friend et al.,1999; Meng & Huang, 2000; Maes et al., 2003). We report here the synthesis and crystal structure the title compound (I) (Fig. 1). All atoms of the 6-chloropyrimidin-4-yloxy group and the C atoms at the para positions of the central benzene ring lie on a crystallographic mirror plane. The symmetry complete benzene ring is generated by the mirror plane and hence the dihedral angles between the pyrimidine rings and the benzene ring are exactly 90°. The crystal packing is stabilized by weak intermolecular hydrogen bonds interactions. Each molecule acts as a donor and acceptor to form C–H···O and C–H···N hydrogen bonds with two other symmetry related molecules, forming a chain run parallel to [101] (Fig. 2; Table 2).

Experimental

Hydroquinone 0.55 g(5 mmol) was dissolved in 50 ml CH3CN, the solution was stirred at room temperature for 0.5 h with an excess of anhydrous K2CO3(2.5 equiv.). After another 0.5 h of reflux, 4,6-dichloropyrimidine2.59 g (10 mmol) in 20 ml CH3CN was added and the mixture was refluxed for 4 h. After evaporation of the solvent, water was added and the mixture was extracted with CH2Cl2 and dried over MgSO4. The products were purified by column chromatography (hexanes/ethyl acetate, 5:1) and obtained as white solids. Colourless block-shapped crystals were obtained by evaporation of CH2Cl2.

Refinement

After being located in the difference map, all H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent C atoms with C—H = 0.93Å and Uiso(H)= 1.2Ueq.

Figures

Fig. 1.
The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level [Symmetry codes: (a) x,-y,z].
Fig. 2.
Part of the crystal structure with hydrogen bonds shown by dashed lines.

Crystal data

C14H8Cl2N4O2F(000) = 680
Mr = 335.14Dx = 1.555 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 3581 reflections
a = 19.0760 (5) Åθ = 2.8–27.8°
b = 6.9693 (2) ŵ = 0.47 mm1
c = 10.7893 (3) ÅT = 298 K
β = 93.301 (3)°Block, colorless
V = 1432.02 (7) Å30.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1156 reflections with I > 2σ(I)'
Radiation source: fine-focus sealed tubeRint = 0.050
graphiteθmax = 25.0°, θmin = 1.9°
[var phi] and ω scansh = −22→22
6918 measured reflectionsk = −8→7
1372 independent reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.105w = 1/[σ2(Fo2) + (0.0635P)2 + 0.2906P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1372 reflectionsΔρmax = 0.22 e Å3
128 parametersΔρmin = −0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0062 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.34316 (10)0.00000.22381 (18)0.0495 (5)
H10.30020.00000.17860.059*
C20.40565 (11)0.00000.16857 (19)0.0543 (6)
C30.46576 (12)0.00000.3504 (2)0.0666 (7)
H30.50890.00000.39500.080*
C40.34857 (11)0.00000.35261 (19)0.0467 (5)
C50.22554 (11)0.00000.36269 (19)0.0512 (6)
C60.19419 (8)0.1719 (3)0.33512 (14)0.0589 (4)
H60.21620.28670.35780.071*
C70.12865 (9)0.1712 (3)0.27244 (15)0.0636 (5)
H70.10580.28590.25230.076*
C80.09825 (11)0.00000.24084 (19)0.0581 (7)
C9−0.02669 (11)0.00000.21792 (19)0.0529 (6)
C10−0.08588 (12)0.00000.1385 (2)0.0570 (6)
H10−0.08390.00000.05260.068*
C11−0.14794 (11)0.00000.1964 (2)0.0525 (5)
C12−0.09188 (11)0.00000.3830 (2)0.0553 (6)
H12−0.09390.00000.46890.066*
Cl10.40498 (4)0.00000.00858 (5)0.0916 (3)
Cl2−0.22616 (3)0.00000.10747 (6)0.0829 (3)
N10.46804 (10)0.00000.22748 (18)0.0676 (6)
N20.40951 (9)0.00000.41739 (17)0.0572 (5)
N3−0.02774 (9)0.00000.33990 (16)0.0533 (5)
N4−0.15287 (9)0.00000.31826 (17)0.0566 (5)
O10.29285 (8)0.00000.42430 (14)0.0619 (5)
O20.03558 (8)0.00000.16482 (14)0.0793 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0393 (11)0.0687 (14)0.0399 (11)0.000−0.0027 (9)0.000
C20.0453 (12)0.0777 (15)0.0400 (11)0.0000.0022 (9)0.000
C30.0407 (12)0.109 (2)0.0495 (13)0.000−0.0062 (10)0.000
C40.0421 (11)0.0573 (12)0.0403 (10)0.0000.0002 (8)0.000
C50.0397 (11)0.0797 (16)0.0345 (10)0.0000.0054 (8)0.000
C60.0543 (9)0.0708 (11)0.0520 (9)−0.0059 (8)0.0062 (7)0.0019 (8)
C70.0528 (9)0.0824 (12)0.0561 (9)0.0116 (9)0.0073 (7)0.0109 (9)
C80.0390 (11)0.102 (2)0.0340 (10)0.0000.0072 (8)0.000
C90.0434 (11)0.0779 (15)0.0378 (11)0.0000.0067 (9)0.000
C100.0484 (12)0.0836 (16)0.0389 (11)0.0000.0011 (9)0.000
C110.0440 (11)0.0612 (14)0.0519 (12)0.000−0.0009 (9)0.000
C120.0515 (13)0.0762 (16)0.0389 (11)0.0000.0078 (9)0.000
Cl10.0605 (4)0.1762 (9)0.0387 (4)0.0000.0072 (3)0.000
Cl20.0467 (4)0.1308 (7)0.0695 (5)0.000−0.0106 (3)0.000
N10.0415 (10)0.1109 (17)0.0503 (11)0.0000.0013 (9)0.000
N20.0441 (10)0.0836 (14)0.0429 (9)0.000−0.0057 (8)0.000
N30.0452 (10)0.0774 (13)0.0375 (9)0.0000.0050 (8)0.000
N40.0447 (10)0.0750 (13)0.0509 (11)0.0000.0095 (8)0.000
O10.0430 (8)0.1051 (13)0.0376 (7)0.0000.0019 (6)0.000
O20.0403 (9)0.1598 (19)0.0379 (8)0.0000.0040 (7)0.000

Geometric parameters (Å, °)

C1—C21.363 (3)C7—C81.361 (2)
C1—C41.388 (3)C7—H70.9300
C1—H10.9300C8—C7i1.361 (2)
C2—N11.317 (3)C8—O21.410 (3)
C2—Cl11.725 (2)C9—N31.317 (3)
C3—N21.328 (3)C9—O21.348 (3)
C3—N11.329 (3)C9—C101.377 (3)
C3—H30.9300C10—C111.370 (3)
C4—N21.322 (3)C10—H100.9300
C4—O11.350 (2)C11—N41.323 (3)
C5—C6i1.364 (2)C11—Cl21.727 (2)
C5—C61.364 (2)C12—N41.322 (3)
C5—O11.411 (3)C12—N31.334 (3)
C6—C71.387 (2)C12—H120.9300
C6—H60.9300
C2—C1—C4114.92 (19)C7i—C8—C7122.4 (2)
C2—C1—H1122.5C7i—C8—O2118.70 (11)
C4—C1—H1122.5C7—C8—O2118.70 (11)
N1—C2—C1125.3 (2)N3—C9—O2119.27 (19)
N1—C2—Cl1115.94 (16)N3—C9—C10124.21 (19)
C1—C2—Cl1118.76 (17)O2—C9—C10116.52 (19)
N2—C3—N1128.1 (2)C11—C10—C9114.6 (2)
N2—C3—H3115.9C11—C10—H10122.7
N1—C3—H3115.9C9—C10—H10122.7
N2—C4—O1113.24 (18)N4—C11—C10124.4 (2)
N2—C4—C1122.83 (19)N4—C11—Cl2116.32 (17)
O1—C4—C1123.93 (19)C10—C11—Cl2119.24 (18)
C6i—C5—C6122.8 (2)N4—C12—N3127.8 (2)
C6i—C5—O1118.57 (10)N4—C12—H12116.1
C6—C5—O1118.57 (10)N3—C12—H12116.1
C5—C6—C7118.36 (17)C2—N1—C3113.6 (2)
C5—C6—H6120.8C4—N2—C3115.20 (19)
C7—C6—H6120.8C9—N3—C12114.53 (19)
C8—C7—C6118.97 (17)C12—N4—C11114.45 (18)
C8—C7—H7120.5C4—O1—C5117.07 (16)
C6—C7—H7120.5C9—O2—C8119.40 (16)
C4—C1—C2—N10.0C1—C4—N2—C30.0
C4—C1—C2—Cl1180.0N1—C3—N2—C40.0
C2—C1—C4—N20.0O2—C9—N3—C12180.0
C2—C1—C4—O1180.0C10—C9—N3—C120.0
C6i—C5—C6—C7−2.3 (3)N4—C12—N3—C90.0
O1—C5—C6—C7178.76 (14)N3—C12—N4—C110.0
C5—C6—C7—C8−0.1 (3)C10—C11—N4—C120.0
C6—C7—C8—C7i2.4 (3)Cl2—C11—N4—C12180.0
C6—C7—C8—O2−172.75 (14)N2—C4—O1—C5180.0
N3—C9—C10—C110.0C1—C4—O1—C50.0
O2—C9—C10—C11180.0C6i—C5—O1—C490.53 (16)
C9—C10—C11—N40.0C6—C5—O1—C4−90.53 (16)
C9—C10—C11—Cl2180.0N3—C9—O2—C80.0
C1—C2—N1—C30.0C10—C9—O2—C8180.0
Cl1—C2—N1—C3180.0C7i—C8—O2—C992.31 (16)
N2—C3—N1—C20.0C7—C8—O2—C9−92.31 (16)
O1—C4—N2—C3180.0

Symmetry codes: (i) x, −y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10···O2ii0.932.573.463 (3)161
C3—H3···N2iii0.932.483.355 (3)157

Symmetry codes: (ii) −x, y, −z; (iii) −x+1, y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2746).

References

  • Bruker (2007). SAINT-Plus and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  • Friend, R. H., Gymer, R. W., Holmes, A. B., Burrroughes, J. H., Marks, R. N., Taliani, C., Bradley, D. C. C., Dos Santos, D. A., Brédas, J. L., Lögdlund, M. & Salaneck, W. R. (1999). Nature (London), 397, 121–C128.
  • Halim, M., Pillow, J. N. G., Samuel, I. D. W. & Burn, P. L. (1999). Adv. Mater.11, 371–C374.
  • Maes, W., Amabilino, D. B. & Dehaen, W. (2003). Tetrahedron, 59, 3937–C3943.
  • Meng, H. & Huang, W. J. (2000). Org. Chem.65, 3894–C3901. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography