PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m224.
Published online 2009 January 23. doi:  10.1107/S1600536809002359
PMCID: PMC2968349

Tetra­chlorido(1,10-phenanthroline-κ2 N,N′)platinum(IV) acetonitrile hemisolvate

Abstract

The asymmetric unit of the title compound, [PtCl4(C12H8N2)]·0.5CH3CN, contains two crystallographically independent PtIV complexes with very similar geometry and one solvent mol­ecule. In the complexes, each PtIV ion is six-coordinated in a distorted octa­hedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. Because of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom are slightly shorter than those trans to the Cl atom. The compound displays numerous inter­molecular π–π inter­actions between six-membered rings, with a shortest centroid-to-centroid distance of 3.654 Å. There are also weak intra- and inter­molecular C—H(...)Cl hydrogen bonds.

Related literature

For details of some other Pt–phenanthroline complexes, see: Buse et al. (1977 [triangle]); Fanizzi et al. (1996 [triangle]). For related Pt–bipyridine complexes, see: Hambley (1986 [triangle]); Hojjat Kashani et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m224-scheme1.jpg

Experimental

Crystal data

  • [PtCl4(C12H8N2)]·0.5C2H3N
  • M r = 1075.24
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m224-efi1.jpg
  • a = 7.671 (5) Å
  • b = 12.619 (8) Å
  • c = 16.63 (1) Å
  • α = 89.70 (1)°
  • β = 87.46 (1)°
  • γ = 78.797 (7)°
  • V = 1577 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 9.56 mm−1
  • T = 293 (2) K
  • 0.55 × 0.30 × 0.30 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.035, T max = 0.057
  • 8700 measured reflections
  • 5856 independent reflections
  • 5250 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.104
  • S = 1.09
  • 5856 reflections
  • 372 parameters
  • H-atom parameters constrained
  • Δρmax = 1.97 e Å−3
  • Δρmin = −2.05 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002359/im2096sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002359/im2096Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (grant No. KRF-2007-412-J02001).

supplementary crystallographic information

Comment

The asymmetric unit of the title compound, [PtCl4(C12H8N2)].0.5CH3CN, contains two crystallographically independent PtIV complexes with identical geometry and a CH3CN solvent molecule (Fig. 1 and 2). In the complexes, each Pt4+ ion is six-coordinated in a distorted octahedral environment by two N atoms of the 1,10-phenanthroline ligand and four Cl atoms. The main contributions to the distortion are the tight N—Pt—N chelate angles (82.0 (2)° and 80.9 (2)°), which result in non-linear trans axes (Cl—Pt—N = 174.7 (2)–175.7 (2)°, Cl—Pt—Cl = 177.57 (8)° and 175.68 (7)°). Because of the different trans effects of the N and Cl atoms, the Pt—Cl bonds trans to the N atom (lengths: 2.294 (2), 2.297 (2), 2.301 (2) and 2.298 (2) Å; mean length: 2.298 (2) Å) are slightly shorter than bond lengths to mutually trans Cl atoms (lengths: 2.322 (2), 2.312 (2), 2.302 (2) and 2.309 (2) Å; mean length: 2.311 (2) Å). The compound displays numerous intermolecular π–π interactions between six-membered rings, with a shortest centroid–centroid distance of 3.654 Å. There are also weak intra- and intermolecular C—H···Cl hydrogen bonds (Table 1).

Experimental

To a solution of K2PtCl6 (0.2026 g, 0.417 mmol) in H2O (10 ml) was added 1,10-phenanthroline (0.2162 g, 1.200 mmol) in MeOH (10 ml), and stirred for 5 h at room temperature. The formed precipitate was separated by filtration and washed with water and MeOH and dried under vacuum, to give a yellow powder (0.1710 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (aromatic) or 0.96 Å (CH3) and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C)].

Figures

Fig. 1.
The structure of the title compound, with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Fig. 2.
View of the unit-cell contents of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[PtCl4(C12H8N2)]·0.5C2H3NZ = 2
Mr = 1075.24F(000) = 1004
Triclinic, P1Dx = 2.264 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.671 (5) ÅCell parameters from 907 reflections
b = 12.619 (8) Åθ = 3.0–26.4°
c = 16.63 (1) ŵ = 9.56 mm1
α = 89.70 (1)°T = 293 K
β = 87.46 (1)°Rod, yellow
γ = 78.797 (7)°0.55 × 0.30 × 0.30 mm
V = 1577 (2) Å3

Data collection

Bruker SMART 1000 CCD diffractometer5856 independent reflections
Radiation source: fine-focus sealed tube5250 reflections with I > 2σ(I)
graphiteRint = 0.027
[var phi] and ω scansθmax = 25.7°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −9→9
Tmin = 0.035, Tmax = 0.057k = −15→14
8700 measured reflectionsl = −9→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.104w = 1/[σ2(Fo2) + (0.0696P)2 + 1.1983P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
5856 reflectionsΔρmax = 1.97 e Å3
372 parametersΔρmin = −2.05 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0069 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pt10.22405 (3)0.743662 (18)0.348926 (14)0.03174 (12)
Cl10.1723 (3)0.90349 (15)0.27957 (12)0.0592 (6)
Cl20.4276 (3)0.66204 (15)0.25175 (12)0.0586 (6)
Cl30.4436 (2)0.80367 (14)0.41769 (12)0.0440 (4)
Cl4−0.0011 (3)0.68354 (17)0.28563 (13)0.0604 (6)
N10.2550 (6)0.6080 (4)0.4184 (3)0.0259 (10)
N20.0449 (7)0.8027 (4)0.4402 (3)0.0329 (12)
C10.3525 (9)0.5108 (5)0.4027 (4)0.0336 (14)
H10.41540.49820.35340.040*
C20.3624 (9)0.4275 (5)0.4583 (4)0.0379 (15)
H20.43160.36020.44560.046*
C30.2724 (9)0.4430 (6)0.5313 (5)0.0406 (17)
H30.28060.38710.56850.049*
C40.1658 (9)0.5460 (5)0.5493 (4)0.0336 (14)
C50.0584 (10)0.5727 (7)0.6212 (4)0.0442 (18)
H50.06360.52170.66210.053*
C6−0.0497 (10)0.6690 (7)0.6318 (4)0.0466 (18)
H6−0.11840.68340.67940.056*
C7−0.0609 (9)0.7500 (6)0.5710 (4)0.0408 (16)
C8−0.1779 (10)0.8520 (7)0.5756 (6)0.053 (2)
H8−0.25170.87090.62130.064*
C9−0.1814 (10)0.9223 (7)0.5128 (6)0.056 (2)
H9−0.25940.98870.51510.067*
C10−0.0692 (10)0.8948 (6)0.4460 (5)0.0457 (18)
H10−0.07450.94320.40340.055*
C110.0471 (8)0.7290 (5)0.5010 (4)0.0321 (14)
C120.1595 (8)0.6274 (5)0.4905 (4)0.0272 (12)
Pt20.66093 (3)0.20111 (2)0.213982 (14)0.03046 (12)
Cl50.6389 (3)0.17427 (19)0.35077 (11)0.0554 (5)
Cl60.6342 (3)0.38351 (16)0.23497 (13)0.0553 (5)
Cl70.9662 (2)0.17316 (15)0.21686 (12)0.0454 (4)
Cl80.3574 (2)0.21957 (18)0.20343 (12)0.0523 (5)
N30.6888 (7)0.2128 (4)0.0925 (3)0.0320 (12)
N40.6814 (7)0.0429 (4)0.1845 (3)0.0317 (12)
C130.6842 (12)0.3021 (7)0.0489 (5)0.052 (2)
H130.66230.36940.07400.063*
C140.7131 (14)0.2939 (9)−0.0360 (5)0.068 (3)
H140.71110.3558−0.06680.081*
C150.7435 (13)0.1957 (8)−0.0718 (5)0.061 (2)
H150.76430.1910−0.12730.073*
C160.7445 (10)0.1033 (6)−0.0286 (4)0.0454 (17)
C170.7660 (13)−0.0050 (8)−0.0609 (5)0.065 (3)
H170.7849−0.0152−0.11620.078*
C180.7596 (13)−0.0894 (8)−0.0150 (6)0.070 (3)
H180.7768−0.1575−0.03860.084*
C190.7265 (10)−0.0793 (6)0.0715 (5)0.0491 (19)
C200.7087 (12)−0.1636 (7)0.1247 (7)0.060 (2)
H200.7216−0.23390.10540.073*
C210.6734 (12)−0.1430 (7)0.2032 (7)0.064 (3)
H210.6576−0.19890.23770.077*
C220.6599 (10)−0.0387 (6)0.2342 (5)0.0478 (19)
H220.6362−0.02580.28900.057*
C230.7100 (8)0.0249 (5)0.1044 (4)0.0338 (14)
C240.7161 (8)0.1149 (5)0.0555 (4)0.0340 (14)
N50.225 (2)0.4009 (12)0.0069 (10)0.153 (6)
C250.0741 (19)0.4592 (9)0.1403 (7)0.094 (4)
H26A0.14040.50480.16690.140*
H26B0.06920.39650.17260.140*
H26C−0.04450.49840.13280.140*
C260.159 (2)0.4266 (10)0.0640 (8)0.098 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pt10.04667 (19)0.02322 (16)0.02332 (16)−0.00292 (11)0.00364 (11)−0.00038 (10)
Cl10.1033 (17)0.0321 (9)0.0373 (10)−0.0022 (9)0.0031 (11)0.0082 (8)
Cl20.0919 (15)0.0362 (9)0.0423 (11)−0.0070 (9)0.0334 (11)−0.0047 (8)
Cl30.0463 (9)0.0337 (8)0.0532 (11)−0.0113 (7)−0.0004 (8)−0.0019 (8)
Cl40.0792 (14)0.0493 (11)0.0543 (12)−0.0101 (10)−0.0322 (11)−0.0024 (9)
N10.030 (3)0.028 (3)0.021 (2)−0.008 (2)−0.002 (2)−0.001 (2)
N20.036 (3)0.030 (3)0.030 (3)−0.001 (2)0.000 (2)−0.004 (2)
C10.036 (3)0.030 (3)0.035 (4)−0.007 (3)0.001 (3)−0.005 (3)
C20.039 (4)0.031 (3)0.045 (4)−0.010 (3)−0.009 (3)0.001 (3)
C30.040 (4)0.039 (4)0.048 (4)−0.017 (3)−0.017 (3)0.014 (3)
C40.036 (3)0.044 (4)0.027 (3)−0.020 (3)−0.005 (3)0.000 (3)
C50.055 (4)0.062 (5)0.024 (3)−0.034 (4)−0.004 (3)0.001 (3)
C60.051 (4)0.063 (5)0.032 (4)−0.029 (4)0.009 (3)−0.010 (3)
C70.034 (3)0.058 (4)0.035 (4)−0.019 (3)0.005 (3)−0.015 (3)
C80.038 (4)0.060 (5)0.060 (5)−0.010 (3)0.013 (4)−0.033 (4)
C90.042 (4)0.039 (4)0.085 (7)−0.005 (3)0.011 (4)−0.026 (4)
C100.046 (4)0.036 (4)0.053 (5)−0.001 (3)−0.003 (4)−0.014 (3)
C110.026 (3)0.040 (3)0.031 (3)−0.008 (3)0.001 (3)−0.011 (3)
C120.029 (3)0.031 (3)0.024 (3)−0.010 (2)−0.005 (2)0.004 (2)
Pt20.02315 (16)0.04333 (18)0.02481 (16)−0.00705 (10)0.00409 (10)−0.01164 (11)
Cl50.0534 (11)0.0889 (15)0.0243 (8)−0.0158 (10)0.0042 (8)−0.0096 (9)
Cl60.0596 (12)0.0453 (10)0.0580 (12)−0.0041 (8)0.0057 (10)−0.0247 (9)
Cl70.0250 (8)0.0594 (11)0.0528 (11)−0.0107 (7)0.0002 (7)−0.0201 (9)
Cl80.0228 (8)0.0838 (14)0.0487 (11)−0.0072 (8)0.0031 (7)−0.0119 (10)
N30.031 (3)0.039 (3)0.028 (3)−0.011 (2)0.005 (2)−0.006 (2)
N40.027 (3)0.038 (3)0.033 (3)−0.013 (2)0.001 (2)−0.007 (2)
C130.068 (5)0.044 (4)0.046 (5)−0.014 (4)0.003 (4)0.001 (4)
C140.089 (7)0.075 (6)0.042 (5)−0.024 (5)0.004 (5)0.018 (5)
C150.080 (6)0.075 (6)0.025 (4)−0.010 (5)0.002 (4)−0.002 (4)
C160.048 (4)0.053 (4)0.033 (4)−0.004 (3)0.002 (3)−0.013 (3)
C170.073 (6)0.076 (6)0.036 (4)0.007 (5)−0.002 (4)−0.024 (4)
C180.078 (6)0.061 (6)0.064 (6)0.008 (5)−0.016 (5)−0.038 (5)
C190.046 (4)0.042 (4)0.059 (5)−0.005 (3)−0.008 (4)−0.016 (4)
C200.059 (5)0.038 (4)0.084 (7)−0.006 (4)−0.018 (5)−0.012 (4)
C210.063 (6)0.047 (5)0.086 (7)−0.016 (4)−0.024 (5)0.015 (5)
C220.040 (4)0.056 (5)0.052 (5)−0.018 (3)−0.007 (4)0.015 (4)
C230.027 (3)0.039 (4)0.035 (4)−0.005 (3)0.000 (3)−0.013 (3)
C240.029 (3)0.043 (4)0.029 (3)−0.004 (3)0.002 (3)−0.012 (3)
N50.179 (15)0.133 (12)0.121 (12)0.031 (10)0.022 (11)−0.030 (10)
C250.127 (10)0.069 (7)0.081 (8)−0.015 (7)0.027 (8)−0.008 (6)
C260.131 (12)0.073 (8)0.075 (8)0.017 (7)−0.010 (8)−0.020 (7)

Geometric parameters (Å, °)

Pt1—N12.041 (5)Pt2—Cl52.301 (2)
Pt1—N22.044 (5)Pt2—Cl72.302 (2)
Pt1—Cl12.294 (2)Pt2—Cl82.309 (2)
Pt1—Cl22.297 (2)N3—C131.332 (10)
Pt1—Cl42.312 (2)N3—C241.358 (8)
Pt1—Cl32.322 (2)N4—C221.348 (9)
N1—C11.327 (8)N4—C231.353 (8)
N1—C121.374 (8)C13—C141.421 (12)
N2—C101.313 (9)C13—H130.9300
N2—C111.369 (9)C14—C151.351 (14)
C1—C21.390 (10)C14—H140.9300
C1—H10.9300C15—C161.365 (12)
C2—C31.365 (11)C15—H150.9300
C2—H20.9300C16—C241.410 (10)
C3—C41.420 (10)C16—C171.448 (12)
C3—H30.9300C17—C181.315 (14)
C4—C121.411 (9)C17—H170.9300
C4—C51.425 (10)C18—C191.451 (13)
C5—C61.339 (11)C18—H180.9300
C5—H50.9300C19—C201.404 (13)
C6—C71.427 (11)C19—C231.408 (10)
C6—H60.9300C20—C211.336 (14)
C7—C111.393 (9)C20—H200.9300
C7—C81.420 (11)C21—C221.400 (12)
C8—C91.364 (13)C21—H210.9300
C8—H80.9300C22—H220.9300
C9—C101.378 (12)C23—C241.400 (10)
C9—H90.9300N5—C261.077 (17)
C10—H100.9300C25—C261.425 (18)
C11—C121.407 (9)C25—H26A0.9600
Pt2—N32.030 (5)C25—H26B0.9600
Pt2—N42.032 (5)C25—H26C0.9600
Pt2—Cl62.298 (2)
N1—Pt1—N282.0 (2)N4—Pt2—Cl595.07 (17)
N1—Pt1—Cl1174.98 (15)Cl6—Pt2—Cl590.10 (8)
N2—Pt1—Cl192.96 (16)N3—Pt2—Cl787.56 (15)
N1—Pt1—Cl292.78 (15)N4—Pt2—Cl789.02 (15)
N2—Pt1—Cl2174.77 (15)Cl6—Pt2—Cl791.93 (7)
Cl1—Pt1—Cl292.23 (8)Cl5—Pt2—Cl790.84 (7)
N1—Pt1—Cl488.58 (15)N3—Pt2—Cl889.53 (15)
N2—Pt1—Cl488.78 (17)N4—Pt2—Cl887.37 (15)
Cl1—Pt1—Cl491.60 (9)Cl6—Pt2—Cl891.46 (8)
Cl2—Pt1—Cl490.38 (10)Cl5—Pt2—Cl891.84 (7)
N1—Pt1—Cl390.10 (15)Cl7—Pt2—Cl8175.68 (7)
N2—Pt1—Cl389.02 (17)C13—N3—C24120.0 (6)
Cl1—Pt1—Cl389.54 (8)C13—N3—Pt2127.6 (5)
Cl2—Pt1—Cl391.72 (9)C24—N3—Pt2112.3 (4)
Cl4—Pt1—Cl3177.57 (8)C22—N4—C23120.1 (6)
C1—N1—C12120.0 (5)C22—N4—Pt2127.4 (5)
C1—N1—Pt1128.9 (4)C23—N4—Pt2112.4 (4)
C12—N1—Pt1111.2 (4)N3—C13—C14119.6 (8)
C10—N2—C11118.9 (6)N3—C13—H13120.2
C10—N2—Pt1129.9 (5)C14—C13—H13120.2
C11—N2—Pt1111.1 (4)C15—C14—C13119.7 (9)
N1—C1—C2121.3 (6)C15—C14—H14120.2
N1—C1—H1119.4C13—C14—H14120.2
C2—C1—H1119.4C14—C15—C16121.8 (8)
C3—C2—C1121.1 (7)C14—C15—H15119.1
C3—C2—H2119.5C16—C15—H15119.1
C1—C2—H2119.5C15—C16—C24116.8 (7)
C2—C3—C4118.7 (6)C15—C16—C17126.4 (8)
C2—C3—H3120.6C24—C16—C17116.8 (7)
C4—C3—H3120.6C18—C17—C16122.4 (8)
C12—C4—C3117.9 (6)C18—C17—H17118.8
C12—C4—C5117.0 (6)C16—C17—H17118.8
C3—C4—C5125.1 (7)C17—C18—C19121.8 (8)
C6—C5—C4122.1 (7)C17—C18—H18119.1
C6—C5—H5119.0C19—C18—H18119.1
C4—C5—H5119.0C20—C19—C23117.4 (8)
C5—C6—C7120.8 (7)C20—C19—C18125.9 (8)
C5—C6—H6119.6C23—C19—C18116.7 (8)
C7—C6—H6119.6C21—C20—C19120.1 (8)
C11—C7—C8116.4 (7)C21—C20—H20120.0
C11—C7—C6119.1 (7)C19—C20—H20120.0
C8—C7—C6124.5 (7)C20—C21—C22121.1 (8)
C9—C8—C7119.7 (7)C20—C21—H21119.5
C9—C8—H8120.2C22—C21—H21119.5
C7—C8—H8120.2N4—C22—C21119.9 (8)
C8—C9—C10119.9 (7)N4—C22—H22120.1
C8—C9—H9120.0C21—C22—H22120.1
C10—C9—H9120.0N4—C23—C24117.1 (6)
N2—C10—C9122.4 (8)N4—C23—C19121.4 (7)
N2—C10—H10118.8C24—C23—C19121.4 (7)
C9—C10—H10118.8N3—C24—C23117.1 (6)
N2—C11—C7122.6 (6)N3—C24—C16122.1 (7)
N2—C11—C12117.9 (6)C23—C24—C16120.8 (6)
C7—C11—C12119.5 (6)C26—C25—H26A109.5
N1—C12—C11117.4 (5)C26—C25—H26B109.5
N1—C12—C4121.1 (6)H26A—C25—H26B109.5
C11—C12—C4121.4 (6)C26—C25—H26C109.5
N3—Pt2—N480.9 (2)H26A—C25—H26C109.5
N3—Pt2—Cl693.96 (16)H26B—C25—H26C109.5
N4—Pt2—Cl6174.73 (16)N5—C26—C25178.9 (18)
N3—Pt2—Cl5175.68 (16)
N2—Pt1—N1—C1175.1 (6)N4—Pt2—N3—C13177.0 (6)
Cl2—Pt1—N1—C1−4.2 (5)Cl6—Pt2—N3—C13−1.8 (6)
Cl4—Pt1—N1—C186.1 (5)Cl7—Pt2—N3—C13−93.6 (6)
Cl3—Pt1—N1—C1−95.9 (5)Cl8—Pt2—N3—C1389.6 (6)
N2—Pt1—N1—C12−5.8 (4)N4—Pt2—N3—C24−3.5 (4)
Cl2—Pt1—N1—C12174.9 (4)Cl6—Pt2—N3—C24177.7 (4)
Cl4—Pt1—N1—C12−94.8 (4)Cl7—Pt2—N3—C2485.9 (4)
Cl3—Pt1—N1—C1283.1 (4)Cl8—Pt2—N3—C24−90.9 (4)
N1—Pt1—N2—C10−172.5 (6)N3—Pt2—N4—C22−173.2 (6)
Cl1—Pt1—N2—C107.8 (6)Cl5—Pt2—N4—C228.3 (5)
Cl4—Pt1—N2—C10−83.8 (6)Cl7—Pt2—N4—C2299.1 (5)
Cl3—Pt1—N2—C1097.3 (6)Cl8—Pt2—N4—C22−83.3 (5)
N1—Pt1—N2—C114.8 (4)N3—Pt2—N4—C232.8 (4)
Cl1—Pt1—N2—C11−174.9 (4)Cl5—Pt2—N4—C23−175.7 (4)
Cl4—Pt1—N2—C1193.5 (4)Cl7—Pt2—N4—C23−84.9 (4)
Cl3—Pt1—N2—C11−85.5 (4)Cl8—Pt2—N4—C2392.7 (4)
C12—N1—C1—C2−0.8 (9)C24—N3—C13—C14−1.8 (12)
Pt1—N1—C1—C2178.1 (5)Pt2—N3—C13—C14177.7 (6)
N1—C1—C2—C3−0.2 (10)N3—C13—C14—C150.5 (15)
C1—C2—C3—C40.7 (10)C13—C14—C15—C161.1 (16)
C2—C3—C4—C12−0.3 (9)C14—C15—C16—C24−1.3 (14)
C2—C3—C4—C5177.1 (6)C14—C15—C16—C17176.5 (10)
C12—C4—C5—C62.7 (10)C15—C16—C17—C18−177.8 (10)
C3—C4—C5—C6−174.7 (7)C24—C16—C17—C180.0 (13)
C4—C5—C6—C7−0.5 (11)C16—C17—C18—C191.4 (15)
C5—C6—C7—C11−2.2 (10)C17—C18—C19—C20176.7 (9)
C5—C6—C7—C8176.9 (7)C17—C18—C19—C23−3.0 (13)
C11—C7—C8—C91.0 (11)C23—C19—C20—C211.5 (12)
C6—C7—C8—C9−178.1 (7)C18—C19—C20—C21−178.2 (9)
C7—C8—C9—C10−1.2 (12)C19—C20—C21—C22−2.4 (14)
C11—N2—C10—C93.1 (11)C23—N4—C22—C212.3 (10)
Pt1—N2—C10—C9−179.8 (6)Pt2—N4—C22—C21178.0 (5)
C8—C9—C10—N2−0.9 (12)C20—C21—C22—N40.5 (12)
C10—N2—C11—C7−3.3 (10)C22—N4—C23—C24174.7 (6)
Pt1—N2—C11—C7179.1 (5)Pt2—N4—C23—C24−1.6 (7)
C10—N2—C11—C12174.6 (6)C22—N4—C23—C19−3.1 (9)
Pt1—N2—C11—C12−3.0 (7)Pt2—N4—C23—C19−179.4 (5)
C8—C7—C11—N21.2 (10)C20—C19—C23—N41.2 (10)
C6—C7—C11—N2−179.6 (6)C18—C19—C23—N4−179.1 (7)
C8—C7—C11—C12−176.7 (6)C20—C19—C23—C24−176.5 (7)
C6—C7—C11—C122.5 (9)C18—C19—C23—C243.2 (11)
C1—N1—C12—C11−174.8 (6)C13—N3—C24—C23−176.7 (6)
Pt1—N1—C12—C116.1 (7)Pt2—N3—C24—C233.8 (7)
C1—N1—C12—C41.3 (9)C13—N3—C24—C161.5 (10)
Pt1—N1—C12—C4−177.9 (4)Pt2—N3—C24—C16−178.0 (5)
N2—C11—C12—N1−2.1 (8)N4—C23—C24—N3−1.5 (9)
C7—C11—C12—N1175.9 (6)C19—C23—C24—N3176.3 (6)
N2—C11—C12—C4−178.2 (6)N4—C23—C24—C16−179.7 (6)
C7—C11—C12—C4−0.2 (9)C19—C23—C24—C16−1.9 (10)
C3—C4—C12—N1−0.7 (9)C15—C16—C24—N30.0 (11)
C5—C4—C12—N1−178.3 (5)C17—C16—C24—N3−178.0 (7)
C3—C4—C12—C11175.2 (6)C15—C16—C24—C23178.2 (7)
C5—C4—C12—C11−2.4 (9)C17—C16—C24—C230.2 (10)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···Cl20.932.683.243 (7)120
C1—H1···Cl60.932.753.632 (7)158
C6—H6···Cl8i0.932.743.637 (8)163
C10—H10···Cl10.932.723.275 (9)120
C13—H13···Cl60.932.683.248 (9)120
C15—H15···Cl1ii0.932.793.669 (9)159
C21—H21···Cl2iii0.932.723.451 (9)136
C22—H22···Cl50.932.743.297 (9)120

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2096).

References

  • Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Buse, K. D., Keller, H. J. & Pritzkow, H. (1977). Inorg. Chem.16, 1072–1076.
  • Fanizzi, F. P., Natile, G., Lanfranchi, M., Tiripicchio, A., Laschi, F. & Zanello, P. (1996). Inorg. Chem.35, 3173–3182. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hambley, T. W. (1986). Acta Cryst. C42, 49–51.
  • Hojjat Kashani, L., Amani, V., Yousefi, M. & Khavasi, H. R. (2008). Acta Cryst. E64, m905–m906. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography