PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o303.
Published online 2009 January 14. doi:  10.1107/S160053680900066X
PMCID: PMC2968347

Norfloxacin sesquihydrate

Abstract

In the crystal structure of the title compound [systematic name: 1-ethyl-6-fluoro-4-oxo-7-(piperazin-4-ium-1-yl)-1,4-dihydro­quinoline-3-carboxyl­ate sesquihydrate], C16H18FN3O3·1.42H2O, N—H(...)O and O—H(...)O hydrogen bonds assemble the mol­ecules in a two-dimensional layered corrugated sheet structure parallel to the b axis. The water mol­ecules are disordered [occupancies 0.741 (11) and 0.259 (11)].

Related literature

For related structures, see: Yuasa et al. (1982 [triangle]); Windholz et al. (1983 [triangle]); Katdare et al. (1986 [triangle]); Šuštar et al. (1993 [triangle]); Florence et al. (2000 [triangle]); Barbas et al. (2006 [triangle]); Basavoju et al. (2006 [triangle]); Barbas et al. (2007 [triangle]); Chongcharoen et al. (2008 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0o303-scheme1.jpg

Experimental

Crystal data

  • C16H18FN3O3·1.42H2O
  • M r = 344.12
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o303-efi1.jpg
  • a = 8.8434 (18) Å
  • b = 22.312 (5) Å
  • c = 8.7564 (18) Å
  • β = 109.35 (3)°
  • V = 1630.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 298 (2) K
  • 0.20 × 0.20 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: none
  • 16819 measured reflections
  • 3228 independent reflections
  • 2553 reflections with I > 2σ(I)
  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.081
  • wR(F 2) = 0.218
  • S = 1.03
  • 3228 reflections
  • 253 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900066X/gw2057sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900066X/gw2057Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

NVR thanks the Birla Institute of Technology for financial support. NVR also thanks Jagadeesh Babu and Professor Ashwini Nangia, University of Hyderabad, for help in X-ray diffraction.

supplementary crystallographic information

Comment

Norfloxacin (NF) is a broad spectrum 4-fluoroquinolone antibacterial used in the treatment of urinary tract infections. As part of our interest in polymorphs and hydrates of NF, we have investigated the crystal structure of NF sesquihydrate, (I) (Fig. 1). NF molecule is zwitterionic and the N3 nitrogen is protonated similar to the reported structure of dihydrate (Florence et al., 2000) and anhydrous zwitterion (Barbas et al., 2007). The molecules are linked via N—H···O and O—H···O hydrogen bonds, forming two-dimensional corrugated sheets parallel to b axis. These sheets are linked together by the water molecules which act as acceptors of H atoms, assembling the molecules in an infinite two-dimensional network (Fig. 2).

Experimental

The title compound was prepared from anhydrous form as reported by Katdare et al.,(1986). It was then dissolved in Acetonitrile on water bath and allowed to cool in sealed flask. Pale yellow colored block like crystals suitable for x-ray analysis appeared after two days.

Refinement

The lattice water molecules are disordered. The O4 oxygen is disordered over two sites, O4A and O4B, with occupancies of 0.741 and 0.259 respectively. The O5 oxygen atom has a occupancy of 0.423. Due to disorder the hydrogen atoms on O5 oxygen could not be located. All H atoms were located from difference Fourier synthesis. Those bonded to O atoms were then refined independently and isotropically, whilst those attached to C and N atoms were placed in geometrically calculated positions and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C), N—H = 0.90 Å, C—H distance restraints of 0.93, 0.96 and 0.97 Å for aromatic, methylene and methyl groups, respectively.

Figures

Fig. 1.
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Labels for Hydrogen atoms have been omitted for clarity.
Fig. 2.
The packing of (I), showing the corrugated sheet layers of molecules parallel to b axis and water molecules connected by N—H···O and O—H···O hydrogen bonds (dashed lines).

Crystal data

C16H18FN3O3·1.42H2OF(000) = 725.5
Mr = 344.12Dx = 1.402 Mg m3
Monoclinic, P21/cMelting point: 492.5(3) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.8434 (18) ÅCell parameters from 3228 reflections
b = 22.312 (5) Åθ = 1.8–26.1°
c = 8.7564 (18) ŵ = 0.11 mm1
β = 109.35 (3)°T = 298 K
V = 1630.2 (7) Å3Block, pale yellow
Z = 40.20 × 0.20 × 0.10 mm

Data collection

Bruker SMART CCD area-detector diffractometer2553 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
graphiteθmax = 26.1°, θmin = 1.8°
[var phi] and ω scansh = −10→10
16819 measured reflectionsk = −27→27
3228 independent reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.081Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.218H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.1124P)2 + 1.8021P] where P = (Fo2 + 2Fc2)/3
3228 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
F10.2851 (2)0.73405 (8)0.1027 (2)0.0442 (5)
C90.5896 (4)0.69034 (13)0.4775 (4)0.0313 (7)
H90.63400.65630.53650.038*
N10.7787 (3)0.75248 (11)0.6815 (3)0.0313 (6)
C80.4641 (3)0.68388 (13)0.3326 (4)0.0302 (7)
C100.6513 (4)0.74655 (12)0.5373 (4)0.0282 (6)
N20.4098 (3)0.62818 (11)0.2644 (3)0.0338 (6)
C60.4554 (4)0.79261 (13)0.3075 (4)0.0304 (7)
H60.40790.82650.24980.037*
C70.4011 (4)0.73759 (13)0.2506 (4)0.0312 (7)
C40.6462 (4)0.85899 (13)0.5062 (4)0.0313 (7)
C10.8307 (4)0.80766 (13)0.7354 (4)0.0327 (7)
H10.91280.81010.83440.039*
C20.7747 (4)0.86019 (13)0.6590 (4)0.0315 (7)
O10.9214 (3)0.91437 (11)0.8908 (3)0.0543 (7)
O30.5884 (3)0.90336 (10)0.4227 (3)0.0509 (7)
O20.8443 (3)0.96306 (11)0.6594 (3)0.0563 (8)
C50.5828 (3)0.79879 (12)0.4528 (3)0.0278 (6)
C30.8524 (4)0.91709 (13)0.7418 (4)0.0330 (7)
C140.4966 (4)0.57470 (13)0.3422 (4)0.0378 (8)
H14A0.46220.56330.43250.045*
H14B0.61050.58320.38380.045*
N30.2914 (3)0.51183 (11)0.1476 (3)0.0382 (7)
H3A0.25280.49720.22320.046*
H3B0.27620.48400.06970.046*
C150.8690 (4)0.70072 (14)0.7748 (4)0.0391 (8)
H15A0.90770.71090.88900.047*
H15B0.79720.66670.76070.047*
C120.2026 (4)0.56722 (14)0.0767 (4)0.0427 (8)
H12A0.08840.55890.03670.051*
H12B0.23440.5803−0.01380.051*
C110.2368 (4)0.61614 (14)0.2023 (4)0.0381 (8)
H11A0.17960.65230.15450.046*
H11B0.20020.60390.29040.046*
C130.4652 (4)0.52396 (14)0.2223 (4)0.0393 (8)
H13A0.50990.53390.13810.047*
H13B0.51860.48810.27670.047*
C161.0069 (5)0.6835 (2)0.7236 (5)0.0635 (12)
H16A0.96840.67010.61320.095*
H16B1.06560.65170.79160.095*
H16C1.07580.71750.73270.095*
O4A0.1091 (6)0.4638 (2)0.3166 (6)0.0616 (18)0.741 (11)
O50.2349 (14)0.5705 (7)0.6166 (16)0.076 (3)0.423 (6)
O4B0.1742 (14)0.4991 (6)0.4249 (17)0.059 (5)0.259 (11)
H4B0.134 (8)0.463 (3)0.440 (8)0.13 (2)*
H4A0.020 (11)0.489 (4)0.282 (10)0.19 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
F10.0476 (11)0.0359 (10)0.0394 (11)−0.0060 (8)0.0016 (9)−0.0039 (8)
C90.0353 (16)0.0209 (14)0.0396 (17)0.0036 (12)0.0149 (13)0.0037 (12)
N10.0330 (14)0.0235 (12)0.0355 (14)0.0007 (10)0.0086 (11)0.0014 (10)
C80.0312 (15)0.0244 (15)0.0392 (17)−0.0002 (12)0.0170 (13)−0.0039 (12)
C100.0320 (15)0.0221 (14)0.0342 (16)−0.0016 (11)0.0160 (13)−0.0018 (12)
N20.0301 (14)0.0221 (13)0.0485 (16)−0.0002 (10)0.0118 (12)−0.0066 (11)
C60.0339 (16)0.0232 (14)0.0351 (16)0.0020 (12)0.0128 (13)0.0033 (12)
C70.0298 (15)0.0320 (16)0.0313 (16)−0.0018 (12)0.0094 (12)−0.0039 (12)
C40.0355 (16)0.0229 (14)0.0350 (16)−0.0020 (12)0.0112 (13)−0.0017 (12)
C10.0321 (16)0.0328 (16)0.0314 (16)0.0006 (13)0.0082 (12)−0.0010 (13)
C20.0330 (16)0.0275 (15)0.0348 (16)−0.0018 (12)0.0123 (13)−0.0026 (12)
O10.0660 (17)0.0436 (15)0.0409 (14)−0.0094 (12)0.0010 (12)−0.0095 (11)
O30.0640 (17)0.0217 (11)0.0489 (15)−0.0043 (11)−0.0056 (12)0.0063 (10)
O20.0724 (18)0.0306 (13)0.0495 (15)−0.0186 (12)−0.0017 (13)0.0018 (11)
C50.0313 (15)0.0228 (14)0.0314 (15)−0.0014 (11)0.0134 (12)−0.0009 (11)
C30.0289 (15)0.0274 (16)0.0406 (18)0.0006 (12)0.0086 (13)−0.0054 (13)
C140.0335 (16)0.0258 (15)0.051 (2)0.0005 (13)0.0106 (14)−0.0029 (14)
N30.0458 (16)0.0211 (13)0.0436 (16)−0.0045 (11)0.0093 (13)−0.0048 (11)
C150.0448 (19)0.0286 (17)0.0395 (18)0.0020 (14)0.0080 (14)0.0079 (13)
C120.0379 (18)0.0264 (16)0.054 (2)−0.0032 (13)0.0015 (15)−0.0004 (14)
C110.0303 (17)0.0266 (16)0.056 (2)−0.0009 (12)0.0121 (14)−0.0022 (14)
C130.0409 (18)0.0226 (15)0.054 (2)0.0026 (13)0.0153 (15)−0.0055 (14)
C160.060 (3)0.063 (3)0.072 (3)0.025 (2)0.029 (2)0.021 (2)
O4A0.061 (3)0.058 (3)0.071 (3)0.020 (2)0.031 (2)0.024 (3)
O50.048 (6)0.101 (10)0.066 (8)0.015 (6)0.003 (5)−0.015 (7)
O4B0.052 (7)0.060 (9)0.071 (10)0.007 (6)0.030 (6)0.038 (8)

Geometric parameters (Å, °)

F1—C71.361 (3)C14—C131.506 (4)
C9—C81.389 (4)C14—H14A0.9700
C9—C101.398 (4)C14—H14B0.9700
C9—H90.9300N3—C131.483 (4)
N1—C11.344 (4)N3—C121.485 (4)
N1—C101.392 (4)N3—H3A0.9000
N1—C151.486 (4)N3—H3B0.9000
C8—N21.393 (4)C15—C161.483 (5)
C8—C71.413 (4)C15—H15A0.9700
C10—C51.406 (4)C15—H15B0.9700
N2—C141.459 (4)C12—C111.507 (5)
N2—C111.469 (4)C12—H12A0.9700
C6—C71.352 (4)C12—H12B0.9700
C6—C51.399 (4)C11—H11A0.9700
C6—H60.9300C11—H11B0.9700
C4—O31.236 (4)C13—H13A0.9700
C4—C21.441 (4)C13—H13B0.9700
C4—C51.471 (4)C16—H16A0.9600
C1—C21.359 (4)C16—H16B0.9600
C1—H10.9300C16—H16C0.9600
C2—C31.510 (4)O4A—H4B1.03 (7)
O1—C31.245 (4)O4A—H4A0.93 (10)
O2—C31.242 (4)O4B—H4B0.91 (7)
C8—C9—C10122.0 (3)C13—C14—H14B109.7
C8—C9—H9119.0H14A—C14—H14B108.2
C10—C9—H9119.0C13—N3—C12111.1 (2)
C1—N1—C10119.0 (2)C13—N3—H3A109.4
C1—N1—C15117.4 (3)C12—N3—H3A109.4
C10—N1—C15123.4 (2)C13—N3—H3B109.4
C9—C8—N2122.8 (3)C12—N3—H3B109.4
C9—C8—C7115.9 (3)H3A—N3—H3B108.0
N2—C8—C7121.1 (3)C16—C15—N1112.4 (3)
N1—C10—C9121.6 (3)C16—C15—H15A109.1
N1—C10—C5118.5 (2)N1—C15—H15A109.1
C9—C10—C5120.0 (3)C16—C15—H15B109.1
C8—N2—C14118.4 (3)N1—C15—H15B109.1
C8—N2—C11119.4 (2)H15A—C15—H15B107.9
C14—N2—C11110.2 (2)N3—C12—C11110.3 (3)
C7—C6—C5120.4 (3)N3—C12—H12A109.6
C7—C6—H6119.8C11—C12—H12A109.6
C5—C6—H6119.8N3—C12—H12B109.6
C6—C7—F1117.9 (3)C11—C12—H12B109.6
C6—C7—C8123.4 (3)H12A—C12—H12B108.1
F1—C7—C8118.7 (3)N2—C11—C12109.6 (3)
O3—C4—C2125.4 (3)N2—C11—H11A109.7
O3—C4—C5120.3 (3)C12—C11—H11A109.7
C2—C4—C5114.4 (3)N2—C11—H11B109.7
N1—C1—C2126.2 (3)C12—C11—H11B109.7
N1—C1—H1116.9H11A—C11—H11B108.2
C2—C1—H1116.9N3—C13—C14111.6 (3)
C1—C2—C4119.2 (3)N3—C13—H13A109.3
C1—C2—C3117.1 (3)C14—C13—H13A109.3
C4—C2—C3123.7 (3)N3—C13—H13B109.3
C6—C5—C10118.3 (3)C14—C13—H13B109.3
C6—C5—C4119.1 (3)H13A—C13—H13B108.0
C10—C5—C4122.5 (3)C15—C16—H16A109.5
O2—C3—O1124.3 (3)C15—C16—H16B109.5
O2—C3—C2119.1 (3)H16A—C16—H16B109.5
O1—C3—C2116.7 (3)C15—C16—H16C109.5
N2—C14—C13110.0 (3)H16A—C16—H16C109.5
N2—C14—H14A109.7H16B—C16—H16C109.5
C13—C14—H14A109.7H4B—O4A—H4A102 (6)
N2—C14—H14B109.7
C10—C9—C8—N2174.5 (3)C5—C4—C2—C3−176.7 (3)
C10—C9—C8—C7−0.8 (4)C7—C6—C5—C10−0.3 (4)
C1—N1—C10—C9−178.4 (3)C7—C6—C5—C4176.0 (3)
C15—N1—C10—C96.1 (4)N1—C10—C5—C6179.7 (3)
C1—N1—C10—C50.5 (4)C9—C10—C5—C6−1.4 (4)
C15—N1—C10—C5−175.0 (3)N1—C10—C5—C43.5 (4)
C8—C9—C10—N1−179.1 (3)C9—C10—C5—C4−177.6 (3)
C8—C9—C10—C52.0 (4)O3—C4—C5—C6−0.7 (4)
C9—C8—N2—C14−4.8 (4)C2—C4—C5—C6178.6 (3)
C7—C8—N2—C14170.3 (3)O3—C4—C5—C10175.5 (3)
C9—C8—N2—C11134.2 (3)C2—C4—C5—C10−5.2 (4)
C7—C8—N2—C11−50.7 (4)C1—C2—C3—O2157.3 (3)
C5—C6—C7—F1−175.1 (3)C4—C2—C3—O2−22.9 (5)
C5—C6—C7—C81.6 (5)C1—C2—C3—O1−22.6 (4)
C9—C8—C7—C6−1.0 (4)C4—C2—C3—O1157.2 (3)
N2—C8—C7—C6−176.4 (3)C8—N2—C14—C13−157.6 (3)
C9—C8—C7—F1175.7 (3)C11—N2—C14—C1359.9 (3)
N2—C8—C7—F10.3 (4)C1—N1—C15—C16−86.4 (4)
C10—N1—C1—C2−2.7 (5)C10—N1—C15—C1689.2 (4)
C15—N1—C1—C2173.1 (3)C13—N3—C12—C11−54.6 (4)
N1—C1—C2—C40.7 (5)C8—N2—C11—C12156.3 (3)
N1—C1—C2—C3−179.5 (3)C14—N2—C11—C12−61.6 (3)
O3—C4—C2—C1−177.6 (3)N3—C12—C11—N258.6 (4)
C5—C4—C2—C13.1 (4)C12—N3—C13—C1453.4 (4)
O3—C4—C2—C32.5 (5)N2—C14—C13—N3−55.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···O4A0.901.88 (1)2.741160
N3—H3A···O4B0.902.10 (1)2.952157
N3—H3B···O2i0.901.992.777 (4)145
N3—H3B···O3i0.902.152.793 (4)128
O4B—H4B···O1ii0.912 (7)2.02 (7)2.793141
O4A—H4A···O2iii0.933 (10)1.90 (9)2.811165

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x−1, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2057).

References

  • Barbas, R., Martí, F., Prohens, R. & Puigjaner, C. (2006). Cryst. Growth Des.6, 1463–1467.
  • Barbas, R., Prohens, R. & Puigjaner, C. (2007). J. Therm. Anal. Calorim.89, 687–692.
  • Basavoju, S., Boström, D. & Velaga, S. P. (2006). Cryst. Growth Des.6, 2699–2708.
  • Bruker (1997). SMART and SAINT Bruker AXS Inc.,Madison, Wisconsin, USA.
  • Chongcharoen, W., Byrn, S. R. & Sutanthavibul, N. (2008). J. Pharm. Sci.97, 473–489. [PubMed]
  • Florence, A. J., Kennedy, A. R., Shankland, N., Wright, E. & Al-Rubayi, A. (2000). Acta Cryst. C56, 1372–1373. [PubMed]
  • Katdare, A. V., Ryan, J. A., Bavitz, J. F., Erb, D. M. & Guillory, J. K. (1986). Mikrochim. Acta Wien III, 90, 1–12.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Šuštar, B., Bukovec, N. & Bukovec, P. (1993). J. Therm. Anal.40, 475–481.
  • Windholz, M., Budavari, S., Blumetti, R. F. & Otterbein, E. S. (1983). Editors. The Merck Index, 10th ed. Rahway, NJ, USA: Merck and Co. Inc.
  • Yuasa, R., Imai, J., Morikawa, H., Kusajima, H., Uchida, H. & Irikura, T. (1982). Yakugaku Zasshi, 102, 469–476. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography