PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m142.
Published online 2009 January 8. doi:  10.1107/S1600536808044061
PMCID: PMC2968346

[(2-Morpholinoeth­yl)(2-pyridylmethyl­ene)amine]dithio­cyanato­zinc(II)

Abstract

The title compound, [Zn(NCS)2(C12H17N3O)], was prepared by the reaction of zinc acetate with pyridine-2-carbaldehyde, 2-morpholinoethyl­amine and ammonium thio­cyanate in an ethanol solution. The ZnII atom is five coordinate with a distorted trigonal–bipyramidal geometry, coordinating with three N atoms of the Schiff base (2-morpholinoeth­yl)(2-pyridylmethyl­idene)amine and two N atoms from two thio­cyanate ligands. The morpholine ring adopts a chair configuration.

Related literature

For background literature on Schiff base complexes, see: Costes et al. (2002 [triangle]); Erxleben (2001 [triangle]); Lacroix et al. (1996 [triangle]); Odoko et al. (2006 [triangle]); Ali et al. (2006 [triangle]). For literature on related zinc(II) complexes, see: Li et al. (2008 [triangle]); Eltayeb et al. (2007 [triangle]); Ali et al. (2008 [triangle]); Zhang & Wang (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m142-scheme1.jpg

Experimental

Crystal data

  • [Zn(NCS)2(C12H17N3O)]
  • M r = 400.82
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m142-efi1.jpg
  • a = 8.185 (2) Å
  • b = 8.654 (2) Å
  • c = 13.368 (4) Å
  • α = 98.439 (3)°
  • β = 102.587 (3)°
  • γ = 102.501 (3)°
  • V = 883.3 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.64 mm−1
  • T = 298 (2) K
  • 0.23 × 0.23 × 0.20 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.705, T max = 0.736
  • 7386 measured reflections
  • 3770 independent reflections
  • 2989 reflections with I > 2σ(I)
  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.124
  • S = 1.04
  • 3770 reflections
  • 208 parameters
  • H-atom parameters constrained
  • Δρmax = 0.57 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044061/su2087sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044061/su2087Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to Jiaying University for financial support.

supplementary crystallographic information

Comment

Schiff bases are extremely interesting ligands and many have been used to form a large number of metal complexes (Costes et al., 2002; Erxleben, 2001; Lacroix et al., 1996; Odoko et al., 2006; Ali et al., 2006). As a continuation of our work in this area, we report herein the crystal structure of a new zinc(II) complex of the Schiff base (2-morpholin-4-ylethyl)-(1-pyridin-2-ylmethylidene)amine and ammonium thiocyanate, (I).

The molecular structure of complex (I) is illustrated in Fig. 1. The ZnII atom is five-coordinate in a trigonal-bipyramidal geometry, coordinating with three N-atoms of the Schiff base ligand and two N-atoms from two thiocyanate ligands. All the coordinate bond lengths are typical and comparable with those in the similar zinc(II) complexes (Li et al., 2008; Eltayeb et al., 2007; Ali et al., 2008; Zhang & Wang, 2007). As expected, the morpholine ring adopts a chair configuration.

Experimental

Pyridine-2-carbaldehyde (0.1 mmol, 10.7 mg), 2-morpholin-4-ylethylamine (0.1 mmol, 13.0 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and zinc acetate dihydrate (0.1 mmol, 22.0 mg) were mixed in an ethanol solution (20 ml). The mixture was stirred for 2 h at room temperature, giving a colorless solution. Single-crystals were formed by gradual evaporation of the solution in air after several days.

Refinement

H atoms were placed in calculated positions and treated as riding atoms: C–H = 0.93 - 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the compound (I), showing 30% probability displacement ellipsoids.

Crystal data

[Zn(NCS)2(C12H17N3O)]Z = 2
Mr = 400.82F(000) = 412
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.185 (2) ÅCell parameters from 2675 reflections
b = 8.654 (2) Åθ = 2.4–25.0°
c = 13.368 (4) ŵ = 1.64 mm1
α = 98.439 (3)°T = 298 K
β = 102.587 (3)°Block, colorless
γ = 102.501 (3)°0.23 × 0.23 × 0.20 mm
V = 883.3 (4) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3770 independent reflections
Radiation source: fine-focus sealed tube2989 reflections with I > 2σ(I)
graphiteRint = 0.031
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.705, Tmax = 0.736k = −11→10
7386 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.064P)2 + 0.1459P] where P = (Fo2 + 2Fc2)/3
3770 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.87080 (4)0.35121 (4)0.23426 (3)0.04844 (15)
S10.75132 (16)0.05952 (14)−0.10471 (7)0.0759 (3)
S21.40376 (14)0.73452 (15)0.38080 (9)0.0854 (4)
O11.1836 (4)0.1269 (4)0.4455 (2)0.0791 (8)
N10.7747 (4)0.5343 (3)0.1472 (2)0.0551 (7)
N20.6437 (3)0.3649 (3)0.2720 (2)0.0552 (7)
N30.8546 (3)0.1714 (3)0.3427 (2)0.0493 (6)
N40.8437 (4)0.1978 (4)0.1048 (2)0.0662 (8)
N51.0969 (4)0.5041 (4)0.2956 (3)0.0793 (10)
C10.6221 (4)0.5515 (4)0.1613 (3)0.0531 (8)
C20.5377 (5)0.6554 (4)0.1166 (3)0.0622 (9)
H20.43230.66520.12850.075*
C30.6133 (5)0.7444 (4)0.0539 (3)0.0662 (10)
H30.55920.81550.02230.079*
C40.7674 (5)0.7276 (4)0.0385 (3)0.0690 (10)
H40.82040.7867−0.00380.083*
C50.8445 (5)0.6212 (4)0.0866 (3)0.0648 (9)
H50.95030.61030.07590.078*
C60.5531 (4)0.4478 (4)0.2283 (3)0.0603 (9)
H60.44340.44390.23820.072*
C70.5856 (5)0.2577 (6)0.3393 (3)0.0776 (12)
H7A0.46030.21940.31880.093*
H7B0.62140.31510.41170.093*
C80.6656 (5)0.1177 (5)0.3275 (3)0.0730 (11)
H8A0.64150.05240.37820.088*
H8B0.61340.05060.25810.088*
C90.9411 (5)0.2391 (4)0.4547 (3)0.0612 (9)
H9A0.89780.16470.49620.073*
H9B0.91270.34020.47520.073*
C101.1332 (5)0.2682 (5)0.4768 (3)0.0723 (11)
H10A1.17760.35030.44040.087*
H10B1.18400.30880.55130.087*
C111.1103 (5)0.0677 (5)0.3379 (3)0.0757 (11)
H11A1.1471−0.02830.31620.091*
H11B1.15220.14840.29980.091*
C120.9161 (5)0.0269 (4)0.3108 (3)0.0639 (9)
H12A0.8704−0.01340.23600.077*
H12B0.8735−0.05760.34600.077*
C130.8047 (4)0.1408 (4)0.0181 (3)0.0504 (7)
C141.2216 (5)0.6003 (4)0.3288 (3)0.0560 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0390 (2)0.0533 (2)0.0485 (2)0.00680 (15)0.01199 (15)0.00305 (16)
S10.0891 (7)0.0910 (7)0.0462 (5)0.0300 (6)0.0125 (5)0.0066 (5)
S20.0656 (6)0.0863 (7)0.0827 (7)−0.0173 (5)0.0278 (6)−0.0084 (6)
O10.0664 (17)0.090 (2)0.0778 (19)0.0235 (15)0.0049 (14)0.0222 (16)
N10.0487 (15)0.0542 (16)0.0604 (17)0.0143 (12)0.0129 (13)0.0061 (13)
N20.0465 (15)0.0640 (16)0.0577 (17)0.0151 (13)0.0190 (13)0.0100 (14)
N30.0469 (14)0.0472 (14)0.0473 (14)0.0036 (11)0.0098 (11)0.0060 (11)
N40.083 (2)0.0677 (19)0.0506 (17)0.0277 (16)0.0191 (15)0.0057 (15)
N50.0497 (17)0.077 (2)0.090 (3)−0.0094 (16)−0.0065 (17)0.0269 (19)
C10.0496 (18)0.0513 (18)0.0517 (19)0.0153 (14)0.0064 (14)−0.0036 (14)
C20.056 (2)0.059 (2)0.067 (2)0.0235 (16)0.0071 (17)−0.0023 (17)
C30.072 (2)0.0517 (19)0.068 (2)0.0210 (17)0.0016 (19)0.0079 (17)
C40.070 (2)0.058 (2)0.077 (3)0.0139 (18)0.017 (2)0.0159 (19)
C50.055 (2)0.063 (2)0.080 (3)0.0176 (17)0.0196 (18)0.0153 (19)
C60.0466 (18)0.070 (2)0.063 (2)0.0184 (16)0.0179 (16)0.0011 (18)
C70.053 (2)0.107 (3)0.086 (3)0.018 (2)0.034 (2)0.038 (2)
C80.051 (2)0.078 (3)0.084 (3)−0.0047 (18)0.0138 (19)0.031 (2)
C90.074 (2)0.0553 (19)0.0471 (19)0.0103 (17)0.0135 (17)0.0017 (15)
C100.071 (2)0.070 (2)0.057 (2)0.0043 (19)−0.0076 (18)0.0106 (18)
C110.075 (3)0.085 (3)0.081 (3)0.035 (2)0.031 (2)0.022 (2)
C120.082 (3)0.0477 (18)0.055 (2)0.0115 (17)0.0100 (18)0.0070 (16)
C130.0516 (18)0.0499 (17)0.057 (2)0.0198 (14)0.0182 (15)0.0183 (16)
C140.061 (2)0.064 (2)0.0527 (19)0.0207 (17)0.0245 (17)0.0200 (16)

Geometric parameters (Å, °)

Zn1—N51.951 (3)C3—C41.356 (6)
Zn1—N41.959 (3)C3—H30.9300
Zn1—N22.051 (3)C4—C51.381 (5)
Zn1—N12.273 (3)C4—H40.9300
Zn1—N32.279 (3)C5—H50.9300
S1—C131.611 (4)C6—H60.9300
S2—C141.618 (4)C7—C81.501 (6)
O1—C111.401 (5)C7—H7A0.9700
O1—C101.409 (5)C7—H7B0.9700
N1—C51.319 (5)C8—H8A0.9700
N1—C11.339 (4)C8—H8B0.9700
N2—C61.253 (4)C9—C101.492 (5)
N2—C71.462 (5)C9—H9A0.9700
N3—C81.475 (4)C9—H9B0.9700
N3—C91.479 (4)C10—H10A0.9700
N3—C121.486 (4)C10—H10B0.9700
N4—C131.137 (4)C11—C121.500 (6)
N5—C141.122 (4)C11—H11A0.9700
C1—C21.375 (5)C11—H11B0.9700
C1—C61.471 (5)C12—H12A0.9700
C2—C31.374 (6)C12—H12B0.9700
C2—H20.9300
N5—Zn1—N4117.35 (16)N2—C6—H6120.4
N5—Zn1—N2126.27 (15)C1—C6—H6120.4
N4—Zn1—N2114.94 (12)N2—C7—C8107.8 (3)
N5—Zn1—N191.02 (12)N2—C7—H7A110.1
N4—Zn1—N193.10 (12)C8—C7—H7A110.1
N2—Zn1—N174.60 (11)N2—C7—H7B110.1
N5—Zn1—N3104.43 (12)C8—C7—H7B110.1
N4—Zn1—N397.98 (11)H7A—C7—H7B108.5
N2—Zn1—N379.39 (11)N3—C8—C7112.0 (3)
N1—Zn1—N3153.98 (10)N3—C8—H8A109.2
C11—O1—C10109.3 (3)C7—C8—H8A109.2
C5—N1—C1117.5 (3)N3—C8—H8B109.2
C5—N1—Zn1130.3 (2)C7—C8—H8B109.2
C1—N1—Zn1112.2 (2)H8A—C8—H8B107.9
C6—N2—C7123.2 (3)N3—C9—C10112.0 (3)
C6—N2—Zn1119.9 (2)N3—C9—H9A109.2
C7—N2—Zn1116.5 (2)C10—C9—H9A109.2
C8—N3—C9110.1 (3)N3—C9—H9B109.2
C8—N3—C12107.7 (3)C10—C9—H9B109.2
C9—N3—C12107.8 (3)H9A—C9—H9B107.9
C8—N3—Zn1100.9 (2)O1—C10—C9112.2 (3)
C9—N3—Zn1115.6 (2)O1—C10—H10A109.2
C12—N3—Zn1114.3 (2)C9—C10—H10A109.2
C13—N4—Zn1159.8 (3)O1—C10—H10B109.2
C14—N5—Zn1175.1 (3)C9—C10—H10B109.2
N1—C1—C2123.0 (3)H10A—C10—H10B107.9
N1—C1—C6113.7 (3)O1—C11—C12111.9 (3)
C2—C1—C6123.3 (3)O1—C11—H11A109.2
C3—C2—C1118.2 (3)C12—C11—H11A109.2
C3—C2—H2120.9O1—C11—H11B109.2
C1—C2—H2120.9C12—C11—H11B109.2
C4—C3—C2119.4 (3)H11A—C11—H11B107.9
C4—C3—H3120.3N3—C12—C11110.8 (3)
C2—C3—H3120.3N3—C12—H12A109.5
C3—C4—C5118.9 (4)C11—C12—H12A109.5
C3—C4—H4120.6N3—C12—H12B109.5
C5—C4—H4120.6C11—C12—H12B109.5
N1—C5—C4123.0 (4)H12A—C12—H12B108.1
N1—C5—H5118.5N4—C13—S1179.4 (3)
C4—C5—H5118.5N5—C14—S2177.4 (3)
N2—C6—C1119.3 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2087).

References

  • Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64, m421. [PMC free article] [PubMed]
  • Ali, H. M., Puvaneswary, S. & Ng, S. W. (2006). Acta Cryst. E62, m2737–m2738.
  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Costes, J.-P., Clemente-Juan, J. M., Dahan, F., Dumestre, F. & Tuchagues, J.-P. (2002). Inorg. Chem.41, 2886–2891. [PubMed]
  • Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m2024–m2025.
  • Erxleben, A. (2001). Inorg. Chem.40, 208–213. [PubMed]
  • Lacroix, P. G., Di Bella, S. & Ledoux, I. (1996). Chem. Mater.8, 541–545.
  • Li, H.-Q., Xian, H.-D., Liu, J.-F. & Zhao, G.-L. (2008). Acta Cryst. E64, m1495. [PMC free article] [PubMed]
  • Odoko, M., Tsuchida, N. & Okabe, N. (2006). Acta Cryst. E62, m710–m711.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, Q.-W. & Wang, G.-X. (2007). Acta Cryst. E63, m652–m653.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography