PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m208–m209.
Published online 2009 January 17. doi:  10.1107/S1600536809001718
PMCID: PMC2968334

catena-Poly[[[tetra­aqua­praseo­dym­ium(III)]-di-μ-nicotinato-κ2 O:N2 O:N-disilver(I)-di-μ-nicotinato-κ2 N:O2 N:O] perchlorate monohydrate]

Abstract

In the title compound, {[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2O}n, the PrIII atom, lying on a twofold rotation axis, has a distorted square-anti­prismatic coordination geometry, defined by four O atoms from four nicotinate (nic) ligands and four water mol­ecules. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms from two nicotinate ligands. The linear coordination is augmented by weak inter­actions with three O atoms from one perchlorate anion, one uncoordinated water mol­ecule and one carboxyl­ate group. Two Pr atoms link two {Ag(nic)2}+ units into a ring, which is further extended into an infinite zigzag chain by sharing the Pr atoms. These chains are further connected into a three-dimensional network via weak Ag(...)O inter­actions, O—H(...)O hydrogen bonds, Ag(...)Ag inter­actions [3.357 (2) Å] and π–π inter­actions between the pyridyl rings [centroid–centroid distance = 3.685 (4) Å].

Related literature

For general background, see: Cheng et al. (2007a [triangle],b [triangle]); Luo et al. (2006 [triangle], 2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m208-scheme1.jpg

Experimental

Crystal data

  • [Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2O
  • M r = 1034.59
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m208-efi9.jpg
  • a = 35.396 (3) Å
  • b = 12.3733 (10) Å
  • c = 15.2324 (13) Å
  • V = 6671.2 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 2.76 mm−1
  • T = 273 (2) K
  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.453, T max = 0.552
  • 16336 measured reflections
  • 3065 independent reflections
  • 2478 reflections with I > 2σ(I)
  • R int = 0.049

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.097
  • S = 1.06
  • 3065 reflections
  • 227 parameters
  • 27 restraints
  • H-atom parameters constrained
  • Δρmax = 1.56 e Å−3
  • Δρmin = −0.87 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001718/hy2177sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001718/hy2177Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge Guangdong Ocean University for supporting this work.

supplementary crystallographic information

Comment

Nicotinic acid is a multifunctional bridging ligand possessing of O and N donors, which can thus be utilized to construct lanthanide–transition heterometallic complexes, via carboxylate O atoms binding to lanthanides and N atoms binding to transition metal ions such as AgI or CuI (Cheng et al., 2007a,b; Luo et al., 2006, 2007). On the basis of above considerations, we chose nicotinic acid, PrIII and AgI metal ions as building blocks. A new one-dimensional 4 d–4f coordination polymer was obtained from the hydrothermal treatment of Pr6O11, AgNO3, perchloric acid and nicotinic acid in water.

In the title compound (Fig. 1), the PrIII atom, lying on a twofold rotation axis, has a distorted square-antiprismatic coordination geometry, defined by four O atoms from four nicotinate (nic) ligands and four water molecules. The perchlorate anion lies on a mirror plane and the uncoordinated water molecule lies on a twofold rotation axis. The AgI atom is coordinated in an almost linear fashion by two pyridyl N atoms from two nic ligands. The linear coordination are augmented by weak Ag···O interactions with one O atom from the ClO4- anion, one O atom from the uncoordinated water molecule and one carboxylate O atom from the nic ligand (Table 1). The Ag atom also exhibits an argentophilic interaction, with an Ag···Ag distance of 3.357 (1) Å. The pyridyl rings of the nic ligands coordinating to the Ag atom are almost coplanar and have a dihedral angle of 1.74 (2)°. Two Pr atoms link two Ag(nic)2+ units into a ring, which are further extended into an infinite zigzag chain by sharing the common Pr atoms (Fig. 2). These chains are further connected into a three-dimensional network via the weak Ag···O interactions, O—H···O hydrogen bonds (Table 2), weak Ag···Ag interactions and π–π interactions occurring between the pyridyl rings of neighboring nic ligands [centroid–centroid distance = 3.685 (4) Å].

Experimental

A mixture of Pr6O11 (0.170 g, 0.5 mmol), AgNO3 (0.169 g, 1 mmol), nicotinic acid (0.123 g, 1 mmol), HClO4 (0.12 ml) and H2O (10 ml) was placed in a 23 ml Teflon-lined reactor, which was heated to 433 K for 3 d and then cooled to room temperature at a rate of 10 K h-1. The pale-purple plate crystals obtained were washed with water and dried in air (yield 46% based on Pr).

Refinement

H atoms on C atoms were positioned geometrically and treated as riding on the parent C atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecules were located in difference Fourier maps and fixed in the refinements, with Uiso(H) = 1.5Ueq(O). The highest residual electron density was found 1.09 Å from atom Pr1 and the deepest hole 0.76 Å from atom Cl1.

Figures

Fig. 1.
The asymmetric unit of the title compound, extended to show the Pr and Ag coordination environments. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1/2 - x, 3/2 - y, 1 - z; (ii) x, 1/2 + y, 3/2 - z; (iii) 1/2 - x, ...
Fig. 2.
View of the zigzag chain in the title compound.

Crystal data

[Ag2Pr(C6H4NO2)4(H2O)4]ClO4·H2OF(000) = 4032
Mr = 1034.59Dx = 2.060 Mg m3
Orthorhombic, CmcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2bc 2Cell parameters from 3121 reflections
a = 35.396 (3) Åθ = 1.4–28°
b = 12.3733 (10) ŵ = 2.76 mm1
c = 15.2324 (13) ÅT = 273 K
V = 6671.2 (10) Å3Plate, pale purple
Z = 80.30 × 0.25 × 0.22 mm

Data collection

Bruker APEXII CCD diffractometer3065 independent reflections
Radiation source: fine-focus sealed tube2478 reflections with I > 2σ(I)
graphiteRint = 0.049
[var phi] and ω scansθmax = 25.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −28→42
Tmin = 0.453, Tmax = 0.552k = −13→14
16336 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0479P)2 + 31.5675P] where P = (Fo2 + 2Fc2)/3
3065 reflections(Δ/σ)max < 0.001
227 parametersΔρmax = 1.56 e Å3
27 restraintsΔρmin = −0.86 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pr10.25001.08315 (12)0.25000.0216 (5)
Ag10.11088 (6)0.60988 (15)0.56463 (12)0.0439 (6)
C20.1570 (6)0.8876 (17)0.4208 (13)0.031 (5)
C60.1963 (6)0.9230 (16)0.3979 (13)0.027 (4)
C30.1260 (7)0.943 (2)0.3901 (17)0.048 (6)
H30.12921.00380.35550.058*
C10.1508 (6)0.7976 (18)0.4725 (13)0.033 (5)
H10.17160.76070.49450.040*
C40.0904 (8)0.908 (2)0.411 (2)0.067 (9)
H40.06920.94390.38990.081*
C50.0867 (7)0.816 (2)0.4631 (18)0.054 (7)
H50.06250.79270.47820.065*
N10.1163 (5)0.7608 (15)0.4925 (12)0.040 (5)
O10.2002 (4)0.9976 (12)0.3439 (9)0.035 (3)
O20.2235 (4)0.8725 (12)0.4344 (9)0.033 (3)
N20.1025 (5)0.4681 (15)0.6456 (12)0.037 (4)
C70.1323 (6)0.4144 (16)0.6770 (14)0.032 (5)
H70.15630.43850.66100.038*
C110.0685 (8)0.434 (2)0.669 (2)0.057 (8)
H110.04740.47180.64890.069*
Cl10.00000.6849 (10)0.5898 (10)0.080 (4)
O70.00000.803 (3)0.588 (4)0.150 (19)
O60.00000.647 (5)0.685 (4)0.25 (4)
C80.1300 (6)0.3255 (16)0.7316 (13)0.030 (5)
C90.0945 (7)0.292 (2)0.7558 (19)0.057 (8)
H90.09140.23440.79410.069*
C100.0631 (8)0.346 (3)0.723 (3)0.082 (12)
H100.03880.32320.73620.098*
C120.1652 (6)0.2676 (16)0.7619 (13)0.028 (4)
O30.1962 (4)0.3019 (12)0.7341 (9)0.032 (3)
O40.1611 (4)0.1878 (13)0.8104 (11)0.044 (4)
O1W0.2180 (4)0.9435 (12)0.1603 (9)0.035 (4)
H1W0.23730.91950.12950.053*
H2W0.19960.89180.18070.053*
O2W0.2515 (5)1.1653 (13)0.3996 (10)0.046 (4)
H3W0.26151.23940.41100.069*
H4W0.24541.14090.44860.069*
O3W0.1776 (8)0.50000.50000.080 (10)
H5W0.19200.50100.45830.120*
O50.0324 (9)0.643 (3)0.565 (3)0.19 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pr10.0227 (9)0.0223 (8)0.0199 (8)0.0000.0012 (6)0.000
Ag10.0482 (12)0.0376 (11)0.0458 (11)−0.0044 (9)0.0028 (8)0.0151 (8)
C20.035 (12)0.033 (11)0.024 (10)0.001 (10)0.006 (9)0.001 (9)
C60.032 (12)0.025 (10)0.023 (10)0.000 (9)0.005 (9)−0.004 (8)
C30.038 (14)0.051 (15)0.054 (15)0.000 (12)0.009 (12)0.023 (12)
C10.034 (12)0.038 (12)0.028 (10)−0.003 (10)0.003 (9)0.004 (10)
C40.035 (15)0.07 (2)0.09 (2)0.003 (14)0.004 (15)0.043 (17)
C50.034 (14)0.060 (17)0.069 (18)−0.005 (13)0.012 (12)0.023 (14)
N10.039 (11)0.040 (11)0.040 (10)−0.002 (9)0.006 (8)0.014 (9)
O10.034 (8)0.032 (8)0.037 (8)0.000 (7)0.005 (6)0.013 (7)
O20.029 (8)0.038 (8)0.031 (8)0.000 (7)0.000 (6)0.005 (7)
N20.034 (11)0.033 (10)0.045 (11)0.000 (8)0.002 (8)0.010 (8)
C70.030 (12)0.028 (11)0.037 (12)−0.006 (9)0.001 (9)0.001 (9)
C110.037 (15)0.054 (17)0.08 (2)0.006 (12)0.003 (13)0.029 (15)
Cl10.040 (6)0.070 (8)0.130 (11)0.0000.0000.009 (7)
O70.17 (5)0.09 (3)0.19 (5)0.0000.0000.04 (3)
O60.45 (13)0.14 (5)0.15 (6)0.0000.0000.02 (4)
C80.030 (12)0.024 (11)0.036 (12)−0.002 (9)0.004 (9)0.001 (9)
C90.034 (14)0.054 (16)0.08 (2)−0.002 (12)0.005 (13)0.042 (15)
C100.029 (15)0.08 (2)0.13 (3)0.000 (15)0.004 (17)0.06 (2)
C120.026 (11)0.028 (11)0.031 (11)0.000 (9)0.003 (8)−0.005 (9)
O30.027 (8)0.031 (8)0.037 (8)−0.005 (6)0.002 (6)−0.005 (6)
O40.031 (9)0.044 (10)0.056 (10)0.005 (7)0.007 (7)0.023 (8)
O1W0.029 (8)0.035 (8)0.041 (9)−0.006 (6)0.006 (7)−0.009 (7)
O2W0.071 (12)0.044 (10)0.024 (8)−0.021 (9)0.013 (8)−0.010 (7)
O3W0.047 (16)0.15 (3)0.040 (14)0.0000.000−0.002 (17)
O50.07 (2)0.14 (3)0.35 (6)0.04 (2)0.07 (3)0.12 (3)

Geometric parameters (Å, °)

Pr1—O3i2.390 (14)N2—C111.32 (3)
Pr1—O1W2.477 (14)N2—C71.34 (3)
Pr1—O2W2.495 (14)C7—C81.38 (3)
Pr1—O12.504 (13)C7—H70.9300
Ag1—N22.165 (18)C11—C101.37 (4)
Ag1—N12.175 (18)C11—H110.9300
Ag1—O4ii2.777 (16)Cl1—O5iv1.31 (3)
Ag1—O52.81 (3)Cl1—O51.31 (3)
Ag1—O3W2.90 (2)Cl1—O71.46 (4)
Ag1—Ag1iii3.357 (2)Cl1—O61.52 (5)
C2—C31.37 (3)C8—C91.37 (3)
C2—C11.38 (3)C8—C121.51 (3)
C2—C61.50 (3)C9—C101.39 (4)
C6—O11.24 (2)C9—H90.9300
C6—O21.27 (3)C10—H100.9300
C3—C41.37 (4)C12—O41.24 (2)
C3—H30.9300C12—O31.25 (2)
C1—N11.34 (3)O1W—H1W0.88
C1—H10.9300O1W—H2W0.97
C4—C51.39 (4)O2W—H3W1.00
C4—H40.9300O2W—H4W0.83
C5—N11.33 (3)O3W—H5W0.82
C5—H50.9300
O3i—Pr1—O3v106.9 (7)C3—C4—H4120.8
O3i—Pr1—O1W146.7 (5)C5—C4—H4120.8
O3v—Pr1—O1W89.7 (5)N1—C5—C4123 (2)
O3i—Pr1—O1Wvi89.7 (5)N1—C5—H5118.7
O3v—Pr1—O1Wvi146.7 (5)C4—C5—H5118.7
O1W—Pr1—O1Wvi91.5 (7)C5—N1—C1118 (2)
O3i—Pr1—O2W69.4 (5)C5—N1—Ag1122.9 (16)
O3v—Pr1—O2W82.3 (5)C1—N1—Ag1119.1 (15)
O1W—Pr1—O2W142.9 (5)C6—O1—Pr1140.4 (13)
O1Wvi—Pr1—O2W76.7 (5)C11—N2—C7118 (2)
O3i—Pr1—O2Wvi82.3 (5)C11—N2—Ag1122.3 (16)
O3v—Pr1—O2Wvi69.4 (5)C7—N2—Ag1119.9 (14)
O1W—Pr1—O2Wvi76.7 (5)N2—C7—C8124 (2)
O1Wvi—Pr1—O2Wvi142.9 (5)N2—C7—H7117.8
O2W—Pr1—O2Wvi131.9 (7)C8—C7—H7117.8
O3i—Pr1—O1139.0 (5)N2—C11—C10123 (2)
O3v—Pr1—O175.5 (5)N2—C11—H11118.7
O1W—Pr1—O172.5 (5)C10—C11—H11118.7
O1Wvi—Pr1—O173.2 (5)O5iv—Cl1—O5122 (4)
O2W—Pr1—O170.5 (5)O5iv—Cl1—O7113.2 (18)
O2Wvi—Pr1—O1132.8 (5)O5—Cl1—O7113.2 (18)
O3i—Pr1—O1vi75.5 (5)O5iv—Cl1—O698 (2)
O3v—Pr1—O1vi139.0 (5)O5—Cl1—O698 (2)
O1W—Pr1—O1vi73.2 (5)O7—Cl1—O6109 (3)
O1Wvi—Pr1—O1vi72.5 (5)C9—C8—C7117 (2)
O2W—Pr1—O1vi132.8 (5)C9—C8—C12122.1 (19)
O2Wvi—Pr1—O1vi70.5 (5)C7—C8—C12120.9 (19)
O1—Pr1—O1vi129.9 (7)C8—C9—C10119 (2)
N2—Ag1—N1174.6 (7)C8—C9—H9120.3
N2—Ag1—Ag1iii71.2 (5)C10—C9—H9120.3
N1—Ag1—Ag1iii113.5 (5)C11—C10—C9119 (3)
C3—C2—C1118 (2)C11—C10—H10120.5
C3—C2—C6121.2 (19)C9—C10—H10120.5
C1—C2—C6121 (2)O4—C12—O3124.9 (19)
O1—C6—O2124.6 (19)O4—C12—C8117.7 (18)
O1—C6—C2118.3 (19)O3—C12—C8117.4 (18)
O2—C6—C2117.1 (17)C12—O3—Pr1i150.2 (13)
C4—C3—C2120 (2)Pr1—O1W—H1W100.1
C4—C3—H3119.9Pr1—O1W—H2W126.4
C2—C3—H3119.9H1W—O1W—H2W118.2
N1—C1—C2123 (2)Pr1—O2W—H3W122.7
N1—C1—H1118.3Pr1—O2W—H4W131.7
C2—C1—H1118.3H3W—O2W—H4W105.6
C3—C4—C5118 (3)

Symmetry codes: (i) −x+1/2, −y+3/2, −z+1; (ii) x, y+1/2, −z+3/2; (iii) x, −y+1, −z+1; (iv) −x, y, z; (v) x, −y+3/2, z−1/2; (vi) −x+1/2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1W—H1W···O2vi0.881.792.67 (2)179
O1W—H2W···O4iii0.971.682.63 (2)163
O2W—H3W···O2vii1.001.772.77 (2)176
O2W—H4W···O2viii0.831.952.76 (2)162
O3W—H5W···O1Wix0.822.152.91 (2)157

Symmetry codes: (vi) −x+1/2, y, −z+1/2; (iii) x, −y+1, −z+1; (vii) −x+1/2, y+1/2, z; (viii) x, −y+2, −z+1; (ix) x, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2177).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007a). Dalton Trans. pp. 4059–4066. [PubMed]
  • Cheng, J. W., Zheng, S. T. & Yang, G. Y. (2007b). Inorg. Chem.46, 10261–10267. [PubMed]
  • Luo, F., Che, Y. X. & Zheng, J. M. (2006). Cryst. Growth Des.6, 2432–2434.
  • Luo, F., Hu, D. X., Xue, L., Che, Y. X. & Zheng, J. M. (2007). Cryst. Growth Des.7, 851–853.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography