PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m154.
Published online 2009 January 8. doi:  10.1107/S1600536808044000
PMCID: PMC2968329

catena-Poly[[bis­(3-methyl-4-nitro­pyridine N-oxide-κO)cadmium(II)]-di-μ-dicyanamido-κ4 N 1:N 5]

Abstract

In the title compound, [Cd(C2N3)2(C6H6N2O3)2]n, the CdII ion (site symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-0m154-efi1.jpg) adopts a distorted trans-CdO2N4 octa­hedral environment, being coordinated by two O-bonded 3-methyl-4-nitro­pyridine N-oxide ligands and four dicyanamide (dca) anions. The bridging dca anions lead to a polymeric chain propagating in [100].

Related literature

For related structures, see: Ghoshal et al. (2004 [triangle]); Wu et al. (2004 [triangle]); Schlueter et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m154-scheme1.jpg

Experimental

Crystal data

  • [Cd(C2N3)2(C6H6N2O3)2]
  • M r = 552.76
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m154-efi2.jpg
  • a = 7.5472 (8) Å
  • b = 7.5606 (8) Å
  • c = 9.8352 (10) Å
  • α = 83.680 (1)°
  • β = 68.528 (1)°
  • γ = 79.639 (1)°
  • V = 513.14 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.12 mm−1
  • T = 293 (2) K
  • 0.32 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.692, T max = 0.817
  • 2770 measured reflections
  • 1780 independent reflections
  • 1764 reflections with I > 2σ(I)
  • R int = 0.015

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.053
  • S = 1.00
  • 1780 reflections
  • 152 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808044000/hb2881sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044000/hb2881Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Department of Chemistry of Dezhou University.

supplementary crystallographic information

Comment

The pseudohalide ligand dicyanamide (dca) has been used widely due to its polydentate character and bridging ability, yielding a variety of structures and interesting magnetic properties (Ghoshal et al., 2004; Wu et al., 2004; Schlueter et al., 2005). As a further study of such complexes, the title CdII complex, (I), is reported in this paper (Fig. 1).

Each CdII atom exhibits a slightly distorted octahedral environment with four nitrogen atoms from dicyanamide groups in the equatorial plane, and two oxygen atoms from two N-oxide (pom) ligands at the axial positions (Table 1). Each CdII atom is coordinated to each other by the double bridging –NC—N—CN– ligands to form a one-dimensional chain structure, the Cd···Cd separation being equal to the value of the a-axis.

Experimental

5 ml of a methanol solution of cadmium(II) chloride tetrahydrate (0.5 mmol, 128 mg) and 5 ml of a methanol sulution of dicyanamide (1 mmol, 170 mg) were aded to 10 ml of a methanol solution of POM (1 mmol, 154 mg). The mixture was stirred for 2 h and filtered. The filtrate was slowly evaporated at room temperture and red blocks of (I) were obtained after three weeks.

Refinement

The hydrogen atoms were included in calculated positions (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.
Fagment of the infinite chain structure in (I) showing 50% displacement ellipsoids for the non-hydrogen atoms. Symmetry codes: (i) 1–x, 1–y, 1–z; (ii) –x, 1–y, 1–z; (iii) x–1, y, z; (iv) 1+x, y, ...

Crystal data

[Cd(C2N3)2(C6H6N2O3)2]Z = 1
Mr = 552.76F(000) = 274
Triclinic, P1Dx = 1.789 Mg m3Dm = 1.789 Mg m3Dm measured by not measured
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5472 (8) ÅCell parameters from 2499 reflections
b = 7.5606 (8) Åθ = 2.7–27.9°
c = 9.8352 (10) ŵ = 1.12 mm1
α = 83.680 (1)°T = 293 K
β = 68.528 (1)°Block, red
γ = 79.639 (1)°0.32 × 0.22 × 0.18 mm
V = 513.14 (9) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1780 independent reflections
Radiation source: fine-focus sealed tube1764 reflections with I > 2σ(I)
graphiteRint = 0.015
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→5
Tmin = 0.692, Tmax = 0.817k = −8→8
2770 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0283P)2 + 0.2723P] where P = (Fo2 + 2Fc2)/3
1780 reflections(Δ/σ)max = 0.001
152 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.50000.50000.50000.04339 (10)
O1−0.1329 (4)−0.2147 (3)0.8956 (2)0.0773 (6)
O2−0.3397 (3)−0.0003 (3)0.8532 (3)0.0777 (6)
O30.3605 (3)0.3892 (3)0.7372 (2)0.0664 (5)
N10.4059 (3)0.2818 (3)0.4054 (3)0.0602 (5)
N20.1066 (3)0.1677 (3)0.4552 (3)0.0601 (6)
N3−0.2102 (3)0.3289 (3)0.4816 (3)0.0697 (7)
N4−0.1834 (3)−0.0583 (3)0.8629 (2)0.0528 (5)
N50.2298 (3)0.2829 (3)0.7670 (2)0.0474 (4)
C10.2592 (3)0.2383 (3)0.4278 (2)0.0417 (5)
C2−0.0590 (3)0.2619 (3)0.4680 (2)0.0424 (5)
C3−0.3067 (4)0.3407 (4)0.9163 (4)0.0644 (7)
H3A−0.30830.45790.94600.097*
H3B−0.37740.27050.99940.097*
H3C−0.36520.35240.84330.097*
C4−0.1028 (3)0.2488 (3)0.8542 (2)0.0416 (5)
C5−0.0425 (3)0.0661 (3)0.8317 (2)0.0404 (5)
C60.1501 (4)−0.0059 (3)0.7798 (2)0.0481 (5)
H60.1871−0.12900.76770.058*
C70.2853 (4)0.1047 (4)0.7467 (3)0.0529 (6)
H70.41550.05790.71010.063*
C80.0426 (3)0.3523 (3)0.8193 (3)0.0466 (5)
H80.00920.47540.83260.056*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.02232 (12)0.04541 (15)0.06540 (16)−0.00754 (9)−0.01648 (10)−0.00752 (10)
O10.1114 (18)0.0440 (10)0.0825 (14)−0.0268 (11)−0.0370 (13)0.0064 (9)
O20.0531 (12)0.0775 (14)0.1087 (17)−0.0215 (10)−0.0273 (11)−0.0157 (12)
O30.0540 (11)0.0882 (14)0.0684 (11)−0.0361 (10)−0.0250 (9)0.0028 (10)
N10.0430 (12)0.0582 (12)0.0873 (16)−0.0097 (10)−0.0270 (11)−0.0188 (11)
N20.0338 (11)0.0471 (11)0.1011 (17)−0.0055 (9)−0.0260 (11)−0.0039 (11)
N30.0386 (13)0.0663 (14)0.109 (2)0.0053 (11)−0.0341 (12)−0.0165 (13)
N40.0665 (15)0.0482 (12)0.0449 (10)−0.0183 (10)−0.0151 (9)−0.0078 (8)
N50.0407 (11)0.0577 (12)0.0483 (10)−0.0143 (9)−0.0189 (8)0.0006 (8)
C10.0333 (12)0.0389 (11)0.0559 (12)−0.0019 (9)−0.0185 (9)−0.0114 (9)
C20.0361 (13)0.0462 (11)0.0487 (12)−0.0063 (9)−0.0181 (9)−0.0071 (9)
C30.0403 (14)0.0534 (14)0.094 (2)0.0019 (11)−0.0176 (13)−0.0192 (13)
C40.0370 (11)0.0405 (11)0.0470 (11)−0.0040 (9)−0.0147 (9)−0.0043 (9)
C50.0450 (12)0.0398 (11)0.0375 (10)−0.0078 (9)−0.0152 (9)−0.0018 (8)
C60.0527 (14)0.0429 (12)0.0475 (12)0.0049 (10)−0.0206 (10)−0.0075 (9)
C70.0383 (12)0.0652 (15)0.0529 (13)0.0042 (11)−0.0174 (10)−0.0087 (11)
C80.0446 (13)0.0395 (11)0.0573 (13)−0.0061 (9)−0.0201 (10)−0.0028 (9)

Geometric parameters (Å, °)

Cd1—N3i2.288 (2)N4—C51.472 (3)
Cd1—N3ii2.288 (2)N5—C81.341 (3)
Cd1—N12.309 (2)N5—C71.351 (3)
Cd1—N1iii2.309 (2)C3—C41.498 (3)
Cd1—O3iii2.3110 (19)C3—H3A0.9600
Cd1—O32.3110 (19)C3—H3B0.9600
O1—N41.221 (3)C3—H3C0.9600
O2—N41.216 (3)C4—C81.381 (3)
O3—N51.314 (3)C4—C51.390 (3)
N1—C11.149 (3)C5—C61.379 (3)
N2—C11.283 (3)C6—C71.360 (4)
N2—C21.292 (3)C6—H60.9300
N3—C21.128 (3)C7—H70.9300
N3—Cd1iv2.288 (2)C8—H80.9300
N3i—Cd1—N3ii180.0C8—N5—C7120.7 (2)
N3i—Cd1—N187.09 (8)N1—C1—N2172.1 (2)
N3ii—Cd1—N192.91 (8)N3—C2—N2173.4 (3)
N3i—Cd1—N1iii92.91 (8)C4—C3—H3A109.5
N3ii—Cd1—N1iii87.09 (8)C4—C3—H3B109.5
N1—Cd1—N1iii180.0H3A—C3—H3B109.5
N3i—Cd1—O3iii91.11 (9)C4—C3—H3C109.5
N3ii—Cd1—O3iii88.89 (9)H3A—C3—H3C109.5
N1—Cd1—O3iii87.78 (8)H3B—C3—H3C109.5
N1iii—Cd1—O3iii92.22 (8)C8—C4—C5115.5 (2)
N3i—Cd1—O388.89 (9)C8—C4—C3117.9 (2)
N3ii—Cd1—O391.11 (9)C5—C4—C3126.5 (2)
N1—Cd1—O392.22 (8)C6—C5—C4121.8 (2)
N1iii—Cd1—O387.78 (8)C6—C5—N4117.4 (2)
O3iii—Cd1—O3180.0C4—C5—N4120.8 (2)
N5—O3—Cd1119.76 (14)C7—C6—C5119.4 (2)
C1—N1—Cd1132.98 (19)C7—C6—H6120.3
C1—N2—C2123.0 (2)C5—C6—H6120.3
C2—N3—Cd1iv172.3 (2)N5—C7—C6119.8 (2)
O2—N4—O1124.5 (2)N5—C7—H7120.1
O2—N4—C5118.6 (2)C6—C7—H7120.1
O1—N4—C5116.8 (2)N5—C8—C4122.8 (2)
O3—N5—C8119.5 (2)N5—C8—H8118.6
O3—N5—C7119.7 (2)C4—C8—H8118.6
N3i—Cd1—O3—N568.54 (19)C3—C4—C5—C6−177.0 (2)
N3ii—Cd1—O3—N5−111.46 (19)C8—C4—C5—N4−179.23 (19)
N1—Cd1—O3—N5−18.51 (19)C3—C4—C5—N42.9 (4)
N1iii—Cd1—O3—N5161.49 (19)O2—N4—C5—C6−151.9 (2)
O3iii—Cd1—O3—N5−103 (100)O1—N4—C5—C627.3 (3)
N3i—Cd1—N1—C1−34.0 (3)O2—N4—C5—C428.2 (3)
N3ii—Cd1—N1—C1146.0 (3)O1—N4—C5—C4−152.6 (2)
N1iii—Cd1—N1—C1139 (100)C4—C5—C6—C7−1.5 (3)
O3iii—Cd1—N1—C1−125.2 (3)N4—C5—C6—C7178.7 (2)
O3—Cd1—N1—C154.8 (3)O3—N5—C7—C6178.9 (2)
Cd1—O3—N5—C8−97.0 (2)C8—N5—C7—C6−0.2 (3)
Cd1—O3—N5—C784.0 (2)C5—C6—C7—N51.1 (3)
Cd1—N1—C1—N2−128.5 (19)O3—N5—C8—C4−179.4 (2)
C2—N2—C1—N1174.7 (18)C7—N5—C8—C4−0.4 (3)
Cd1iv—N3—C2—N2−173.9 (15)C5—C4—C8—N50.1 (3)
C1—N2—C2—N3−180 (100)C3—C4—C8—N5178.1 (2)
C8—C4—C5—C60.9 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2881).

References

  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Ghoshal, D., Mostafa, G., Maji, T. K., Zangrando, E., Lu, T. H., Ribas, J. & Chaudhuri, N. R. (2004). New J. Chem.28, 1204–1213.
  • Schlueter, J. A., Manson, J. L. & Geiser, U. (2005). Inorg. Chem.44, 3194–3202. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wu, A.-Q., Zheng, F.-K., Chen, W.-T., Cai, L.-Z., Guo, G.-C., Huang, J.-S., Dong, Z.-C. & Takano, Y. (2004). Inorg. Chem.43, 4839–4845. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography