PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o261.
Published online 2009 January 8. doi:  10.1107/S1600536809000245
PMCID: PMC2968326

3-Phenyl­isoquinolin-1(2H)-one

Abstract

The title compound, C15H11NO, consists of a planar isoquinolinone group to which a phenyl ring is attached in a twisted fashion [dihedral angle = 39.44 (4)°]. The crystal packing is dominated by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds which define centrosymmetric dimeric entitities.

Related literature

For general background and related crystal structures, see: Cho et al. (2002 [triangle]) and references therein. For new chemotherapeutic agents for the treatment of cancer derived from natural compounds, see: Mackay et al. (1997 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o261-scheme1.jpg

Experimental

Crystal data

  • C15H11NO
  • M r = 221.25
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o261-efi1.jpg
  • a = 3.8692 (5) Å
  • b = 12.0171 (16) Å
  • c = 12.3209 (16) Å
  • α = 106.652 (2)°
  • β = 94.137 (2)°
  • γ = 90.579 (2)°
  • V = 547.14 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 290 (2) K
  • 0.21 × 0.15 × 0.08 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.938, T max = 0.993
  • 5473 measured reflections
  • 2001 independent reflections
  • 1545 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.106
  • S = 1.06
  • 2001 reflections
  • 158 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle])’; program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1999 [triangle]) and CAMERON (Watkin et al., 1993 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000245/bg2233sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000245/bg2233Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at IISc. We thank Prof T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

New chemotherapeutic agents for a treatment of cancer from natural compounds have been developed over the last decade (Mackay et al., 1997). Most of the 3-arylisoquinoline derivatives exhibited potent cytotoxicities against five different human tumor cell lines. These potent antitumor activity is studied by molecular modeling to correlate structure-activity relationships (Cho et al., 2002 and references therein).

In the title compound C15H11NO (Fig. 1) the phenyl ring attached to the isoquinolinone moiety at C2 is twisted, forming a dihedral angle of 39.44 (4)°. Bond lengths and angles are within normal ranges (Allen et al., 1987). The C15H11NO monomers are linked via N—H···O and C—H···O hydrogen bonds to form dimers across the inversion center located at (1/2, 1/2, 0) (Fig. 2) and giving raise to two R12(7) and one R22(14) graph-set motifs respectively (Bernstein et al., 1995).

Experimental

A solution of 3-pheylisocoumarin in THF was treated with ammonia and stirred overnight under reflux conditions; the solvent was concentrated to give the solid which was further purified by column chromatography. The material was recrystalized from Dichloromethane.

Refinement

All the H atoms in (I) were positioned geometrically and refined using a riding model with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms. The H atom of N was located from difference fourier map and refined isotropically resulting in N—H abond length of 0.895 (17) Å.

Figures

Fig. 1.
ORTEP diagram of molecule (I) with 50% probability displacement ellipsoids.
Fig. 2.
The crystal packing diagram of (I).The dotted lines indicate intermolecular interactions. H atoms not involved in H-bonding have been omitted for clarity.

Crystal data

C15H11NOZ = 2
Mr = 221.25F(000) = 232
Triclinic, P1Dx = 1.343 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8692 (5) ÅCell parameters from 956 reflections
b = 12.0171 (16) Åθ = 2.0–24.7°
c = 12.3209 (16) ŵ = 0.09 mm1
α = 106.652 (2)°T = 290 K
β = 94.137 (2)°Plate, brown
γ = 90.579 (2)°0.21 × 0.15 × 0.08 mm
V = 547.14 (12) Å3

Data collection

Bruker SMART CCD area-detector diffractometer2001 independent reflections
Radiation source: fine-focus sealed tube1545 reflections with I > 2σ(I)
graphiteRint = 0.016
[var phi] and ω scansθmax = 25.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −4→4
Tmin = 0.938, Tmax = 0.993k = −14→14
5473 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0596P)2 + 0.0314P] where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3290 (3)0.49798 (9)0.14029 (9)0.0377 (3)
H1N0.425 (4)0.4508 (14)0.0808 (14)0.053 (4)*
O10.3406 (3)0.63724 (8)0.04974 (8)0.0494 (3)
C10.2740 (3)0.60824 (11)0.13505 (11)0.0370 (3)
C20.2647 (3)0.45724 (11)0.23136 (11)0.0355 (3)
C30.1426 (4)0.53085 (11)0.32449 (11)0.0404 (3)
H30.10270.50450.38660.048*
C4−0.0576 (4)0.72807 (13)0.42310 (12)0.0475 (4)
H4−0.10230.70440.48640.057*
C5−0.1204 (4)0.83970 (13)0.42281 (13)0.0539 (4)
H5−0.20670.89120.48590.065*
C6−0.0564 (4)0.87701 (13)0.32897 (14)0.0540 (4)
H6−0.09880.95330.32980.065*
C70.0688 (4)0.80168 (12)0.23554 (12)0.0461 (4)
H70.10920.82660.17260.055*
C80.1361 (3)0.68737 (11)0.23437 (11)0.0372 (3)
C90.0743 (3)0.64835 (12)0.32866 (11)0.0377 (3)
C100.3263 (3)0.33257 (11)0.21691 (11)0.0371 (3)
C110.2399 (4)0.25028 (12)0.11318 (12)0.0434 (4)
H110.14540.27350.05190.052*
C120.2941 (4)0.13396 (13)0.10093 (14)0.0526 (4)
H120.23560.07920.03130.063*
C130.4338 (4)0.09853 (13)0.19090 (15)0.0558 (4)
H130.46950.02010.18210.067*
C140.5206 (4)0.17909 (13)0.29387 (14)0.0527 (4)
H140.61490.15510.35470.063*
C150.4681 (4)0.29547 (12)0.30712 (12)0.0442 (4)
H150.52790.34960.37700.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0459 (7)0.0342 (6)0.0338 (6)0.0047 (5)0.0075 (5)0.0098 (5)
O10.0698 (7)0.0432 (6)0.0407 (6)0.0101 (5)0.0135 (5)0.0181 (5)
C10.0399 (8)0.0366 (7)0.0351 (7)0.0009 (6)0.0006 (6)0.0118 (6)
C20.0352 (7)0.0375 (7)0.0346 (7)−0.0010 (5)0.0016 (5)0.0120 (6)
C30.0441 (8)0.0436 (8)0.0356 (7)−0.0006 (6)0.0054 (6)0.0144 (6)
C40.0477 (9)0.0507 (9)0.0400 (8)0.0004 (7)0.0065 (6)0.0059 (7)
C50.0530 (9)0.0483 (9)0.0493 (9)0.0076 (7)0.0040 (7)−0.0036 (7)
C60.0593 (10)0.0376 (8)0.0587 (10)0.0082 (7)−0.0026 (8)0.0053 (7)
C70.0518 (9)0.0393 (8)0.0458 (8)0.0026 (6)−0.0010 (7)0.0111 (6)
C80.0352 (7)0.0367 (7)0.0375 (7)0.0002 (6)−0.0020 (5)0.0082 (6)
C90.0341 (7)0.0403 (8)0.0356 (7)−0.0015 (6)0.0015 (5)0.0062 (6)
C100.0345 (7)0.0377 (7)0.0417 (8)0.0003 (6)0.0068 (6)0.0148 (6)
C110.0493 (9)0.0375 (8)0.0444 (8)0.0002 (6)0.0017 (6)0.0137 (6)
C120.0591 (10)0.0383 (8)0.0568 (10)−0.0021 (7)0.0041 (7)0.0082 (7)
C130.0591 (10)0.0386 (8)0.0752 (11)0.0049 (7)0.0100 (8)0.0240 (8)
C140.0554 (10)0.0525 (9)0.0590 (10)0.0073 (7)0.0046 (7)0.0301 (8)
C150.0476 (8)0.0455 (8)0.0421 (8)0.0018 (6)0.0028 (6)0.0170 (6)

Geometric parameters (Å, °)

N1—C11.3631 (17)C6—H60.9300
N1—C21.3831 (16)C7—C81.3970 (19)
N1—H1N0.895 (17)C7—H70.9300
O1—C11.2408 (15)C8—C91.4060 (18)
C1—C81.4574 (19)C10—C111.3894 (19)
C2—C31.3518 (18)C10—C151.3914 (19)
C2—C101.4811 (18)C11—C121.382 (2)
C3—C91.4263 (19)C11—H110.9300
C3—H30.9300C12—C131.375 (2)
C4—C51.367 (2)C12—H120.9300
C4—C91.410 (2)C13—C141.374 (2)
C4—H40.9300C13—H130.9300
C5—C61.391 (2)C14—C151.380 (2)
C5—H50.9300C14—H140.9300
C6—C71.368 (2)C15—H150.9300
C1—N1—C2125.14 (12)C7—C8—C9120.48 (13)
C1—N1—H1N115.8 (10)C7—C8—C1119.76 (12)
C2—N1—H1N119.0 (10)C9—C8—C1119.76 (12)
O1—C1—N1120.67 (12)C8—C9—C4117.81 (13)
O1—C1—C8123.27 (12)C8—C9—C3119.16 (12)
N1—C1—C8116.06 (11)C4—C9—C3123.03 (13)
C3—C2—N1119.03 (12)C11—C10—C15118.75 (13)
C3—C2—C10124.69 (12)C11—C10—C2120.53 (12)
N1—C2—C10116.25 (11)C15—C10—C2120.72 (12)
C2—C3—C9120.84 (12)C12—C11—C10120.12 (13)
C2—C3—H3119.6C12—C11—H11119.9
C9—C3—H3119.6C10—C11—H11119.9
C5—C4—C9120.84 (14)C13—C12—C11120.49 (15)
C5—C4—H4119.6C13—C12—H12119.8
C9—C4—H4119.6C11—C12—H12119.8
C4—C5—C6120.60 (14)C14—C13—C12119.93 (14)
C4—C5—H5119.7C14—C13—H13120.0
C6—C5—H5119.7C12—C13—H13120.0
C7—C6—C5120.09 (14)C13—C14—C15120.12 (14)
C7—C6—H6120.0C13—C14—H14119.9
C5—C6—H6120.0C15—C14—H14119.9
C6—C7—C8120.18 (14)C14—C15—C10120.59 (14)
C6—C7—H7119.9C14—C15—H15119.7
C8—C7—H7119.9C10—C15—H15119.7
C2—N1—C1—O1179.73 (12)C1—C8—C9—C3−1.05 (19)
C2—N1—C1—C8−0.11 (19)C5—C4—C9—C8−0.4 (2)
C1—N1—C2—C3−1.0 (2)C5—C4—C9—C3−179.69 (13)
C1—N1—C2—C10177.01 (11)C2—C3—C9—C8−0.1 (2)
N1—C2—C3—C91.15 (19)C2—C3—C9—C4179.11 (13)
C10—C2—C3—C9−176.74 (12)C3—C2—C10—C11139.32 (15)
C9—C4—C5—C60.2 (2)N1—C2—C10—C11−38.62 (18)
C4—C5—C6—C70.3 (2)C3—C2—C10—C15−39.97 (19)
C5—C6—C7—C8−0.6 (2)N1—C2—C10—C15142.09 (13)
C6—C7—C8—C90.4 (2)C15—C10—C11—C120.2 (2)
C6—C7—C8—C1−179.14 (13)C2—C10—C11—C12−179.14 (13)
O1—C1—C8—C70.8 (2)C10—C11—C12—C130.0 (2)
N1—C1—C8—C7−179.33 (11)C11—C12—C13—C140.0 (2)
O1—C1—C8—C9−178.69 (12)C12—C13—C14—C15−0.1 (2)
N1—C1—C8—C91.15 (18)C13—C14—C15—C100.2 (2)
C7—C8—C9—C40.2 (2)C11—C10—C15—C14−0.2 (2)
C1—C8—C9—C4179.67 (12)C2—C10—C15—C14179.07 (13)
C7—C8—C9—C3179.44 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.896 (16)1.945 (16)2.8373 (15)174.0 (15)
C11—H11···O1ii0.932.593.4449 (19)152

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2233).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem.10, 2953–2961. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mackay, S. P., Meth-Cohn, O. & Waich, R. D. (1997). In Advances in Heterocyclic Chemistry, edited by A. R. Katritzky. New York: Academic Press.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Watkin, D. J., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography