PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o347.
Published online 2009 January 17. doi:  10.1107/S1600536809001536
PMCID: PMC2968322

7-Nitro-1,2,3,4-tetra­hydro­naphthalene-1-spiro-2′-(1,3-dithiane)

Abstract

In the title compound, C13H15NO2S2, the nitro group is coplanar with the benzene ring to which it is attached, forming a dihedral angle of 1.07 (14)°. The dithiane ring adopts a chair conformation. In the crystal structure, mol­ecules are linked through C—H(...)O and C—H(...)π [C(...)Cg = 3.7164 (15) Å] inter­actions. The crystal studied was an inversion twin with an 0.134 (5):0.866 (5) domain ratio.

Related literature

For the calculation of ring puckering parameters, see: Cremer & Pople (1975 [triangle]). For related literature including applications, see: Goswami & Maity (2008 [triangle]); Fun et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o347-scheme1.jpg

Experimental

Crystal data

  • C13H15NO2S2
  • M r = 281.38
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o347-efi1.jpg
  • a = 12.8673 (1) Å
  • b = 42.2330 (6) Å
  • c = 9.1819 (1) Å
  • V = 4989.67 (10) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.42 mm−1
  • T = 100.0 (1) K
  • 0.41 × 0.30 × 0.06 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.849, T max = 0.977
  • 54206 measured reflections
  • 6726 independent reflections
  • 5979 reflections with I > 2σ(I)
  • R int = 0.067

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.077
  • S = 1.06
  • 6726 reflections
  • 164 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.23 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 3202 Friedel pairs
  • Flack parameter: 0.13 (5)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001536/tk2351sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001536/tk2351Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR/S1/OC-13/2005], Government of India, for financial support. ACM thanks the UGC, Government of India, for a fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

The protection of carbonyl groups to produce dithioketals is now commonly used as an important synthetic technique in the preparation of many organic compounds, including multi-functional complex molecules (Goswami & Maity 2008; Fun et al., 2009). Herein, we report the synthesis of the title compound, (I), from 5-nitro-3,4-dihydro-2H-naphthalen-1-one using boron trifluoride etherate as the catalyst.

In (I), Fig. 1, the nitro group is co-planar with the benzene ring, forming a dihedral angle of 1.07 (14)°. The thiacyclohexane ring adopts a chair conformation with ring puckering parameters of Q = 0.7198 (11) Å, Θ = 8.49 (10)°, and Φ = 79.6 (6)° (Cremer & Pople, 1975). The crystal structure is stabilized by intermolecular C—H···π interactions (Cg1 is the centroid of the C5–C10 benzene ring), see Table 1. Further, neighbouring molecules are linked through C—H···O interactions along the c axis, Fig. 2.

Experimental

A stirred dichloromethane (50 mL) solution of 5-nitro-3,4-dihydro-2H-naphthalen-1-one (500 mg, 2.61 mmol) and boron trifluoride etherate (0.5 mL) in was cooled to 273 K. To this 1,3-propanedithiol (450 mg, 4.1 mmol) was added dropwise over 15 min. The mixture was stirred at room temperature for 3 h and the progress of the reaction was monitored by TLC. After completion of the reaction, NaHCO3 solution was added carefully to neutralize the mixture at room temperature. This was then extracted with dichloromethane. The organic layer was dried (anhydrous Na2SO4) and the solvent removed under reduced pressure. The crude product was purified by column chromatography using silica gel with 10 % ethyl acetate in petroleum ether as eluant to afford (I) (670 mg, 92 %) as a colourless crystalline solid along with other thiane derivatives.

Refinement

All hydrogen atoms were positioned geometrically and refined in the riding model approximation with C—H = 0.93-0.97 Å, and with Uiso(H) = 1.2 Ueq(C). The structure was twinned with a refined BASF ratio of 0.134 (5):0.866 (5).

Figures

Fig. 1.
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of (I), viewed down the a-axis showing the linking of molecules through intermolecular C—H···O interactions (dashed lines) along the c-axis.

Crystal data

C13H15NO2S2F(000) = 2368
Mr = 281.38Dx = 1.498 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 9946 reflections
a = 12.8673 (1) Åθ = 2.8–35.0°
b = 42.2330 (6) ŵ = 0.42 mm1
c = 9.1819 (1) ÅT = 100 K
V = 4989.67 (10) Å3Plate, colourless
Z = 160.41 × 0.30 × 0.06 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6726 independent reflections
Radiation source: fine-focus sealed tube5979 reflections with I > 2σ(I)
graphiteRint = 0.067
[var phi] and ω scansθmax = 37.9°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −22→22
Tmin = 0.849, Tmax = 0.977k = −72→72
54206 measured reflectionsl = −15→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.077w = 1/[σ2(Fo2) + (0.0258P)2 + 6.6616P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6726 reflectionsΔρmax = 0.42 e Å3
164 parametersΔρmin = −0.23 e Å3
1 restraintAbsolute structure: Flack (1983), 3202 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.13 (5)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.10407 (2)0.241432 (7)0.34587 (3)0.01374 (6)
S2−0.04426 (2)0.186537 (7)0.31249 (4)0.01436 (6)
O10.08674 (9)0.16135 (3)0.79752 (12)0.0220 (2)
O20.22833 (9)0.13439 (3)0.82907 (13)0.0258 (2)
N10.16994 (9)0.15045 (3)0.75344 (12)0.0163 (2)
C10.08854 (9)0.20066 (3)0.27797 (13)0.01231 (19)
C20.11450 (10)0.19792 (3)0.11508 (14)0.0159 (2)
H2A0.09110.17750.07910.019*
H2B0.07760.21430.06180.019*
C30.23059 (10)0.20125 (3)0.08744 (15)0.0167 (2)
H3A0.25520.22120.12690.020*
H3B0.24400.2011−0.01650.020*
C40.28806 (11)0.17388 (3)0.15959 (15)0.0167 (2)
H4A0.27450.15460.10550.020*
H4B0.36220.17790.15560.020*
C50.25624 (9)0.16909 (3)0.31606 (15)0.0139 (2)
C60.32137 (11)0.15154 (3)0.40812 (16)0.0173 (2)
H6A0.38400.14390.37190.021*
C70.29507 (11)0.14526 (3)0.55123 (16)0.0169 (2)
H7A0.33880.13350.61120.020*
C80.20103 (10)0.15708 (3)0.60257 (14)0.0140 (2)
C90.13528 (10)0.17506 (3)0.51660 (14)0.0132 (2)
H9A0.07390.18310.55500.016*
C100.16192 (10)0.18097 (3)0.37155 (13)0.0127 (2)
C11−0.11830 (10)0.21555 (3)0.20993 (15)0.0160 (2)
H11A−0.09730.21450.10860.019*
H11B−0.19130.21000.21470.019*
C12−0.10538 (11)0.24943 (3)0.26325 (16)0.0176 (2)
H12A−0.12380.25030.36560.021*
H12B−0.15350.26290.21070.021*
C130.00429 (10)0.26252 (3)0.24439 (15)0.0164 (2)
H13A0.00460.28450.27470.020*
H13B0.02200.26190.14180.020*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.01297 (12)0.01371 (11)0.01454 (13)0.00002 (10)−0.00051 (10)−0.00104 (10)
S20.01150 (11)0.01563 (11)0.01593 (13)−0.00058 (10)−0.00027 (10)0.00191 (10)
O10.0251 (5)0.0258 (5)0.0152 (4)0.0057 (4)0.0027 (4)−0.0002 (4)
O20.0277 (5)0.0308 (5)0.0188 (5)0.0073 (4)−0.0041 (4)0.0086 (4)
N10.0198 (5)0.0157 (4)0.0135 (5)0.0000 (4)−0.0024 (4)0.0006 (4)
C10.0110 (5)0.0143 (4)0.0117 (5)−0.0003 (4)0.0009 (4)−0.0003 (4)
C20.0159 (5)0.0197 (5)0.0121 (5)0.0014 (4)0.0012 (4)−0.0010 (4)
C30.0171 (5)0.0185 (5)0.0146 (5)0.0009 (4)0.0045 (4)0.0010 (4)
C40.0154 (5)0.0187 (5)0.0159 (5)0.0023 (4)0.0047 (4)0.0002 (4)
C50.0123 (5)0.0135 (4)0.0158 (5)−0.0003 (4)0.0018 (4)−0.0002 (4)
C60.0141 (5)0.0172 (5)0.0205 (6)0.0031 (4)0.0015 (5)0.0006 (5)
C70.0153 (5)0.0156 (5)0.0197 (6)0.0020 (4)−0.0024 (4)0.0013 (4)
C80.0158 (5)0.0137 (4)0.0124 (5)−0.0012 (4)−0.0010 (4)0.0003 (4)
C90.0123 (5)0.0146 (5)0.0128 (5)−0.0001 (4)−0.0003 (4)−0.0006 (4)
C100.0116 (5)0.0135 (4)0.0129 (5)−0.0009 (4)−0.0002 (4)−0.0002 (4)
C110.0129 (5)0.0179 (5)0.0173 (6)0.0011 (4)−0.0022 (4)0.0010 (4)
C120.0158 (6)0.0164 (5)0.0207 (6)0.0033 (4)−0.0006 (5)−0.0002 (4)
C130.0152 (5)0.0152 (5)0.0187 (6)0.0019 (4)−0.0006 (4)0.0013 (4)

Geometric parameters (Å, °)

S1—C131.8192 (13)C5—C61.4022 (18)
S1—C11.8421 (12)C5—C101.4086 (17)
S2—C111.8153 (13)C6—C71.383 (2)
S2—C11.8375 (12)C6—H6A0.9300
O1—N11.2337 (16)C7—C81.3915 (18)
O2—N11.2276 (15)C7—H7A0.9300
N1—C81.4688 (17)C8—C91.3840 (17)
C1—C101.5236 (17)C9—C101.3977 (17)
C1—C21.5369 (17)C9—H9A0.9300
C2—C31.5217 (18)C11—C121.5216 (19)
C2—H2A0.9700C11—H11A0.9700
C2—H2B0.9700C11—H11B0.9700
C3—C41.5237 (18)C12—C131.5254 (19)
C3—H3A0.9700C12—H12A0.9700
C3—H3B0.9700C12—H12B0.9700
C4—C51.5075 (19)C13—H13A0.9700
C4—H4A0.9700C13—H13B0.9700
C4—H4B0.9700
C13—S1—C1101.98 (6)C7—C6—H6A119.1
C11—S2—C1100.34 (6)C5—C6—H6A119.1
O2—N1—O1123.49 (12)C6—C7—C8117.77 (12)
O2—N1—C8118.18 (11)C6—C7—H7A121.1
O1—N1—C8118.33 (11)C8—C7—H7A121.1
C10—C1—C2111.90 (10)C9—C8—C7122.36 (12)
C10—C1—S2107.56 (8)C9—C8—N1118.43 (11)
C2—C1—S2110.21 (9)C7—C8—N1119.20 (11)
C10—C1—S1104.60 (8)C8—C9—C10119.44 (11)
C2—C1—S1112.11 (8)C8—C9—H9A120.3
S2—C1—S1110.24 (6)C10—C9—H9A120.3
C3—C2—C1111.63 (11)C9—C10—C5119.50 (11)
C3—C2—H2A109.3C9—C10—C1118.87 (11)
C1—C2—H2A109.3C5—C10—C1121.62 (11)
C3—C2—H2B109.3C12—C11—S2114.24 (9)
C1—C2—H2B109.3C12—C11—H11A108.7
H2A—C2—H2B108.0S2—C11—H11A108.7
C2—C3—C4109.49 (11)C12—C11—H11B108.7
C2—C3—H3A109.8S2—C11—H11B108.7
C4—C3—H3A109.8H11A—C11—H11B107.6
C2—C3—H3B109.8C11—C12—C13113.91 (11)
C4—C3—H3B109.8C11—C12—H12A108.8
H3A—C3—H3B108.2C13—C12—H12A108.8
C5—C4—C3112.60 (11)C11—C12—H12B108.8
C5—C4—H4A109.1C13—C12—H12B108.8
C3—C4—H4A109.1H12A—C12—H12B107.7
C5—C4—H4B109.1C12—C13—S1114.67 (9)
C3—C4—H4B109.1C12—C13—H13A108.6
H4A—C4—H4B107.8S1—C13—H13A108.6
C6—C5—C10119.02 (12)C12—C13—H13B108.6
C6—C5—C4118.89 (11)S1—C13—H13B108.6
C10—C5—C4122.07 (11)H13A—C13—H13B107.6
C7—C6—C5121.88 (12)
C11—S2—C1—C10173.57 (8)O2—N1—C8—C7−0.47 (18)
C11—S2—C1—C2−64.20 (9)O1—N1—C8—C7179.39 (12)
C11—S2—C1—S160.08 (7)C7—C8—C9—C101.89 (18)
C13—S1—C1—C10−173.77 (8)N1—C8—C9—C10−178.31 (11)
C13—S1—C1—C264.78 (10)C8—C9—C10—C5−1.31 (17)
C13—S1—C1—S2−58.40 (8)C8—C9—C10—C1179.70 (11)
C10—C1—C2—C3−45.80 (14)C6—C5—C10—C90.02 (17)
S2—C1—C2—C3−165.44 (8)C4—C5—C10—C9178.31 (11)
S1—C1—C2—C371.36 (12)C6—C5—C10—C1178.98 (11)
C1—C2—C3—C464.05 (14)C4—C5—C10—C1−2.73 (18)
C2—C3—C4—C5−49.41 (15)C2—C1—C10—C9−165.62 (11)
C3—C4—C5—C6−161.70 (12)S2—C1—C10—C9−44.44 (13)
C3—C4—C5—C1020.01 (17)S1—C1—C10—C972.78 (12)
C10—C5—C6—C70.79 (19)C2—C1—C10—C515.41 (16)
C4—C5—C6—C7−177.56 (12)S2—C1—C10—C5136.59 (10)
C5—C6—C7—C8−0.27 (19)S1—C1—C10—C5−106.18 (11)
C6—C7—C8—C9−1.09 (19)C1—S2—C11—C12−61.71 (11)
C6—C7—C8—N1179.11 (11)S2—C11—C12—C1365.29 (14)
O2—N1—C8—C9179.72 (12)C11—C12—C13—S1−62.18 (14)
O1—N1—C8—C9−0.42 (17)C1—S1—C13—C1256.76 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···O1i0.972.583.4565 (18)151
C7—H7A···Cg1ii0.932.823.7164 (15)162

Symmetry codes: (i) −x, −y+1/2, z−1/2; (ii) −x+3/4, y+3/4, z+1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2351).

References

  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Kia, R., Maity, A. C. & Goswami, S. (2009). Acta Cryst. E65, o173. [PMC free article] [PubMed]
  • Goswami, S. & Maity, A. C. (2008). Tetrahedron Lett.49, 3092–3096.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography