PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o290.
Published online 2009 January 10. doi:  10.1107/S1600536809000944
PMCID: PMC2968321

N-[4-(β-d-Allopyranos­yloxy)benzyl­idene]methyl­amine

Abstract

The title compound, C14H19NO6, was synthesized by the condensation reaction between hecilid (4-formyl­phenl-β-d-allopyran­oside) and methyl­amine in methanol. In the crystal structure, the pyran ring adopts a chair conformation and adjacent mol­ecules are linked by inter­molecular O—H(...)O and O—H(...)N hydrogen bonds, forming a three-dimensional network.

Related literature

For the pharmaceutical and biological properties of hecilid and its derivatives, see: Chen et al. (1981 [triangle]); Sha & Mao (1987 [triangle]); Zhu et al. (2006 [triangle]); Yang et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o290-scheme1.jpg

Experimental

Crystal data

  • C14H19NO6
  • M r = 297.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o290-efi1.jpg
  • a = 6.721 (4) Å
  • b = 7.751 (3) Å
  • c = 14.119 (4) Å
  • β = 91.46 (3)°
  • V = 735.3 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 292 (2) K
  • 0.48 × 0.46 × 0.44 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: none
  • 1479 measured reflections
  • 1469 independent reflections
  • 1325 reflections with I > 2σ(I)
  • R int = 0.004
  • 3 standard reflections every 120 reflections intensity decay: 0.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.093
  • S = 1.09
  • 1469 reflections
  • 195 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: DIFRAC (Gabe et al., 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000944/rz2284sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000944/rz2284Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

The natural compound hecilid (systematic name: 4-formylphenl-β-D-allopyranoside], which is extracted from the fruit of Helicia nilagirica Beed. (Chen et al., 1981), has been one major active ingredient of herb medicine used in China for a long time. It has manifested good biological effects on the central nervous system and a low toxicity (Sha & Mao, 1987). Some derivatives of this compound have been reported with good pharmacological activities (Zhu et al., 2006; Yang et al., 2008). The title compound, a new helicid-derived compound, was synthesized via condensation reaction of hecilid and methyl amine with good yield.

In the molecule of the title compound (Fig. 1), the average of C–C bond length in the hexatomic ring is 1.524 (3) Å; The average C(sp3)–O and C(sp2)–O bond lengths are 1.421 (3) and 1.378 (3) Å, respectively. The hexatomic ring adopts chair conformation with the hydroxy group at C3 in axial position and the other substituents at C1, C2 and C4 in equatorial positions. The C(14)–N(1)–C(13)–C(10) and C(11)–C(10)–C(13)–N(1) torsion angles are -175.7 (3) and -165.5 (3) °, respectively, possibly as a consequence of O—H···.N hydrogen bond. In the crystal packing, intermolecular O—H···.O and O—H···.N hydrogen bonds (Table 1) link the molecules into a three-dimensional network.

Experimental

A solution of helicid (1.42 g, 5 mmol) in methanol (8 ml) and a 40% aqueous solution of methyl amine (0.75 ml, 10 mmol) was subjected to ultrasonic radiation for 3 h at 333 K. On cooling to room temperature, colourless crystals were obtained unintentionally.

Refinement

All H were positioned geometrically and refined using a riding model, with C—H = 0.93–0.98 Å, O—H = 0.82 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxy H atoms. In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H19NO6F(000) = 316
Mr = 297.30Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.721 (4) Åθ = 4.2–7.5°
b = 7.751 (3) ŵ = 0.11 mm1
c = 14.119 (4) ÅT = 292 K
β = 91.46 (3)°Block, colourless
V = 735.3 (6) Å30.48 × 0.46 × 0.44 mm
Z = 2

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 1.4°
graphiteh = −8→8
ω/2θ scansk = 0→9
1479 measured reflectionsl = −5→17
1469 independent reflections3 standard reflections every 120 reflections
1325 reflections with I > 2σ(I) intensity decay: 0.8%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0607P)2 + 0.0722P] where P = (Fo2 + 2Fc2)/3
1469 reflections(Δ/σ)max < 0.001
195 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3071 (3)−0.0753 (2)0.21216 (11)0.0379 (4)
O20.4392 (3)−0.3849 (2)0.12078 (13)0.0451 (5)
H2O0.4074−0.42600.17170.068*
O30.1787 (3)0.0239 (3)−0.03679 (11)0.0441 (4)
H3O0.28540.0646−0.05270.066*
O40.3774 (3)0.2704 (2)0.06228 (14)0.0465 (5)
H4O0.38920.37470.07040.070*
O50.2525 (3)0.3895 (2)0.23888 (12)0.0403 (4)
H5O0.17010.42340.27640.060*
O60.3519 (2)0.0903 (3)0.34359 (10)0.0394 (4)
N11.0551 (3)−0.0235 (3)0.64875 (15)0.0434 (5)
C10.3201 (4)−0.0893 (3)0.11071 (17)0.0331 (5)
H10.4538−0.05590.09150.040*
C20.1662 (4)0.0309 (3)0.06374 (16)0.0364 (5)
H20.0333−0.00810.08110.044*
C30.1951 (4)0.2142 (3)0.09971 (16)0.0377 (5)
H30.08640.28730.07540.045*
C40.2018 (4)0.2204 (3)0.20805 (16)0.0336 (5)
H40.07110.18910.23200.040*
C50.3562 (4)0.0917 (3)0.24383 (15)0.0336 (5)
H50.48880.12420.22270.040*
C60.2829 (4)−0.2759 (3)0.0851 (2)0.0419 (6)
H6A0.1575−0.31260.11100.050*
H6B0.2727−0.28700.01670.050*
C70.5264 (3)0.0507 (4)0.39210 (15)0.0346 (5)
C80.5361 (4)0.1100 (4)0.48498 (15)0.0373 (6)
H80.42980.17040.50980.045*
C90.7042 (4)0.0788 (4)0.54001 (15)0.0380 (6)
H90.71020.11650.60260.046*
C100.8654 (4)−0.0086 (3)0.50277 (16)0.0372 (6)
C110.8541 (4)−0.0656 (4)0.40913 (17)0.0414 (6)
H110.9618−0.12260.38340.050*
C120.6830 (4)−0.0379 (4)0.35401 (16)0.0408 (6)
H120.6742−0.07880.29210.049*
C131.0481 (4)−0.0398 (4)0.55985 (18)0.0415 (6)
H131.1629−0.07270.52920.050*
C141.2474 (4)−0.0454 (5)0.6982 (2)0.0536 (7)
H14A1.3461−0.07760.65350.080*
H14B1.2368−0.13410.74530.080*
H14C1.28550.06110.72820.080*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0468 (9)0.0314 (9)0.0350 (9)−0.0009 (8)−0.0059 (7)0.0028 (8)
O20.0549 (11)0.0277 (9)0.0526 (10)0.0046 (8)0.0014 (8)0.0060 (8)
O30.0518 (11)0.0434 (11)0.0366 (8)0.0007 (9)−0.0127 (7)−0.0042 (8)
O40.0700 (13)0.0285 (9)0.0416 (9)−0.0075 (9)0.0098 (8)−0.0041 (8)
O50.0488 (11)0.0329 (9)0.0394 (9)−0.0012 (8)0.0074 (8)−0.0061 (8)
O60.0371 (9)0.0501 (11)0.0307 (8)0.0036 (8)−0.0039 (7)0.0020 (8)
N10.0370 (11)0.0493 (14)0.0435 (11)−0.0017 (10)−0.0059 (9)0.0079 (10)
C10.0350 (12)0.0281 (12)0.0359 (11)−0.0010 (10)−0.0048 (9)−0.0006 (10)
C20.0373 (13)0.0342 (13)0.0373 (12)0.0019 (11)−0.0098 (10)−0.0010 (11)
C30.0453 (13)0.0328 (12)0.0347 (12)0.0072 (12)−0.0069 (10)0.0012 (11)
C40.0365 (12)0.0307 (12)0.0335 (11)0.0018 (11)−0.0007 (9)−0.0006 (10)
C50.0348 (12)0.0368 (13)0.0292 (11)−0.0011 (11)−0.0017 (9)0.0012 (10)
C60.0464 (14)0.0284 (13)0.0504 (14)−0.0019 (12)−0.0091 (11)−0.0016 (11)
C70.0364 (12)0.0338 (12)0.0334 (11)−0.0003 (11)−0.0033 (9)0.0054 (10)
C80.0374 (13)0.0401 (14)0.0345 (12)0.0043 (11)0.0015 (10)0.0000 (11)
C90.0410 (13)0.0430 (14)0.0297 (11)0.0006 (11)−0.0009 (9)0.0004 (11)
C100.0381 (13)0.0366 (13)0.0368 (12)−0.0006 (10)−0.0021 (10)0.0052 (10)
C110.0420 (14)0.0412 (14)0.0412 (13)0.0085 (12)0.0036 (10)0.0018 (12)
C120.0491 (14)0.0418 (14)0.0315 (11)0.0059 (13)−0.0031 (10)−0.0031 (11)
C130.0359 (13)0.0411 (15)0.0475 (14)0.0003 (11)−0.0003 (11)0.0064 (12)
C140.0420 (15)0.0617 (19)0.0564 (16)−0.0042 (15)−0.0165 (12)0.0100 (15)

Geometric parameters (Å, °)

O1—C51.406 (3)C4—C51.517 (3)
O1—C11.441 (3)C4—H40.9800
O2—C61.430 (3)C5—H50.9800
O2—H2O0.8200C6—H6A0.9700
O3—C21.425 (3)C6—H6B0.9700
O3—H3O0.8200C7—C121.377 (4)
O4—C31.415 (3)C7—C81.390 (3)
O4—H4O0.8200C8—C91.376 (3)
O5—C41.420 (3)C8—H80.9300
O5—H5O0.8200C9—C101.392 (4)
O6—C71.378 (3)C9—H90.9300
O6—C51.410 (3)C10—C111.394 (3)
N1—C131.261 (3)C10—C131.471 (4)
N1—C141.463 (3)C11—C121.389 (4)
C1—C61.510 (3)C11—H110.9300
C1—C21.531 (3)C12—H120.9300
C1—H10.9800C13—H130.9300
C2—C31.520 (4)C14—H14A0.9600
C2—H20.9800C14—H14B0.9600
C3—C41.530 (3)C14—H14C0.9600
C3—H30.9800
C5—O1—C1111.46 (17)O6—C5—H5110.4
C6—O2—H2O109.5C4—C5—H5110.4
C2—O3—H3O109.5O2—C6—C1111.5 (2)
C3—O4—H4O109.5O2—C6—H6A109.3
C4—O5—H5O109.5C1—C6—H6A109.3
C7—O6—C5117.35 (18)O2—C6—H6B109.3
C13—N1—C14118.3 (2)C1—C6—H6B109.3
O1—C1—C6107.3 (2)H6A—C6—H6B108.0
O1—C1—C2109.09 (19)C12—C7—O6124.5 (2)
C6—C1—C2111.9 (2)C12—C7—C8121.0 (2)
O1—C1—H1109.5O6—C7—C8114.5 (2)
C6—C1—H1109.5C9—C8—C7119.5 (2)
C2—C1—H1109.5C9—C8—H8120.2
O3—C2—C3111.0 (2)C7—C8—H8120.2
O3—C2—C1110.6 (2)C8—C9—C10120.5 (2)
C3—C2—C1110.17 (18)C8—C9—H9119.7
O3—C2—H2108.3C10—C9—H9119.7
C3—C2—H2108.3C9—C10—C11119.2 (2)
C1—C2—H2108.3C9—C10—C13121.3 (2)
O4—C3—C2105.5 (2)C11—C10—C13119.5 (2)
O4—C3—C4111.1 (2)C12—C11—C10120.5 (2)
C2—C3—C4111.3 (2)C12—C11—H11119.8
O4—C3—H3109.6C10—C11—H11119.8
C2—C3—H3109.6C7—C12—C11119.2 (2)
C4—C3—H3109.6C7—C12—H12120.4
O5—C4—C5110.4 (2)C11—C12—H12120.4
O5—C4—C3109.7 (2)N1—C13—C10122.6 (2)
C5—C4—C3108.34 (19)N1—C13—H13118.7
O5—C4—H4109.5C10—C13—H13118.7
C5—C4—H4109.5N1—C14—H14A109.5
C3—C4—H4109.5N1—C14—H14B109.5
O1—C5—O6107.48 (19)H14A—C14—H14B109.5
O1—C5—C4110.26 (19)N1—C14—H14C109.5
O6—C5—C4107.84 (19)H14A—C14—H14C109.5
O1—C5—H5110.4H14B—C14—H14C109.5
C5—O1—C1—C6175.0 (2)O5—C4—C5—O663.7 (2)
C5—O1—C1—C2−63.6 (2)C3—C4—C5—O6−176.21 (19)
O1—C1—C2—O3178.37 (19)O1—C1—C6—O2−66.7 (3)
C6—C1—C2—O3−63.1 (3)C2—C1—C6—O2173.71 (19)
O1—C1—C2—C355.3 (3)C5—O6—C7—C12−21.4 (4)
C6—C1—C2—C3173.8 (2)C5—O6—C7—C8157.8 (2)
O3—C2—C3—O4−53.9 (2)C12—C7—C8—C9−0.4 (4)
C1—C2—C3—O468.9 (2)O6—C7—C8—C9−179.6 (2)
O3—C2—C3—C4−174.57 (19)C7—C8—C9—C101.2 (4)
C1—C2—C3—C4−51.7 (3)C8—C9—C10—C11−0.5 (4)
O4—C3—C4—O555.8 (3)C8—C9—C10—C13178.6 (2)
C2—C3—C4—O5173.1 (2)C9—C10—C11—C12−1.0 (4)
O4—C3—C4—C5−64.8 (3)C13—C10—C11—C12179.9 (3)
C2—C3—C4—C552.6 (3)O6—C7—C12—C11178.0 (3)
C1—O1—C5—O6−176.31 (17)C8—C7—C12—C11−1.1 (4)
C1—O1—C5—C466.4 (2)C10—C11—C12—C71.8 (4)
C7—O6—C5—O190.4 (2)C14—N1—C13—C10−175.7 (3)
C7—O6—C5—C4−150.8 (2)C9—C10—C13—N115.4 (4)
O5—C4—C5—O1−179.22 (19)C11—C10—C13—N1−165.5 (3)
C3—C4—C5—O1−59.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2O···O5i0.822.022.742 (3)147
O3—H3O···O2ii0.822.142.942 (3)165
O4—H4O···O2iii0.822.022.824 (3)167
O5—H5O···N1iv0.821.912.723 (3)170

Symmetry codes: (i) x, y−1, z; (ii) −x+1, y+1/2, −z; (iii) x, y+1, z; (iv) −x+1, y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2284).

References

  • Chen, W. S., Lu, S. D. & Eberhard, B. (1981). Liebigs Ann. Chem.10, 1893–1897.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J., White, P. S. & Enright, G. D. (1993). DIFRAC Pittsburgh Meeting Abstract, PA 104. American Crystallographic Association, Buffalo, New York, USA.
  • Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull.22, 21–27.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yang, H. J., Hu, C., Li, Y. & Yin, S. F. (2008). Chin. J. Org. Chem.28, 899–902.
  • Zhu, Q. L., Tang, Q., Li, Y. & Yin, S. F. (2006). Chin. J. Org. Chem.26, 1264–1267.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography