PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o335.
Published online 2009 January 17. doi:  10.1107/S1600536809001093
PMCID: PMC2968314

Methyl 3-carboxy-5-nitrobenzoate

Abstract

The structure of the title compound, C9H7NO6, is essentially planar [maximum deviation 0.284 (2)Å] except for the methyl H atoms. The crystal structure is stabilized by asymmetric O—H(...)O hydrogen bonds linking the hydrogen carboxyl­ates into pairs around the inversion centres. There is also π–π stacking of the benzene rings [centroid–centroid distance 3.6912 (12) Å].

Related literature

The title complex is as an important inter­mediate for the preparation of iodinated X-ray contrast media, see: Morin et al. (1987 [triangle]); Singh & Rathore (1980 [triangle]); Stacul (2001 [triangle]); Jin & Xiao (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o335-scheme1.jpg

Experimental

Crystal data

  • C9H7NO6
  • M r = 225.16
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o335-efi1.jpg
  • a = 7.3450 (15) Å
  • b = 8.9050 (18) Å
  • c = 14.474 (3) Å
  • β = 91.18 (3)°
  • V = 946.5 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.950, T max = 0.977
  • 1859 measured reflections
  • 1717 independent reflections
  • 1284 reflections with I > 2σ(I)
  • R int = 0.021
  • 3 standard reflections every 200 reflections intensity decay: 1.0%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.105
  • S = 1.03
  • 1717 reflections
  • 150 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.13 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001093/fb2119sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001093/fb2119Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Jiangsu Institute of Nuclear Medicine.

supplementary crystallographic information

Comment

The molecule of the title complex (Fig.1) is useful as an important intermediate for the preparation of iodinated X-ray contrast media, such as iotalamic acid, ioxitalamic acid, and Ioxilan, which are used clinically all over the world (Morin et al., 1987; Singh et al., 1980; Stacul et al., 2001). We report here the crystal structure of title compound. The crystal data show that the bond lengths and angles are within expected ranges. TThe molecule is essentially planar: the maximum deviation from the weighted least-squares plane calculated through all the non-H atoms is 0.284 (2)Å for O2. The molecules are stacked viaπ-π interactions, with the centroid–centroid distance of 3.6912 (12)Å [symmetry code(i): 2-x, 1-y, 1-z]. The stacked columns are linked together by two intermolecular hydrogen bonds, O—H···O and C—H···O (Tab. 1 and Fig. 2). The O—H···O hydrogen bonds bind the hydrogencarboxylates into pairs.

Experimental

Dimethyl 5-nitroisophthalic acid (956 mg, 4 mmol) was dissolved in hot methanol (6 ml), then sodium hydroxide (152 mg, 3.8 mmol) in methanol (2 ml) was added and refluxed for 30 min. Methanol was distilled off. The solid residue was extracted by warm water and the undissolved diester was filtered off. The filtrate was acidified with 1 mol/l hydrochloric acid (4 ml). The precipitate was filtered and washed with cold water. The crude product was purified by recrystallization. Single crystals were grown by slow evaporation of a ethanol/water (v/v 1:1) solution: colourless block-shaped crystals were formed after several days.

Refinement

All the H atoms could have been discerned in the difference electron density maps. With exception of the hydrogen belonging to the hydroxyl group of the hydrogencarboxylate the hydrogens were situated into the idealized positions and refined in riding motion approximation. The hydroxyl hydrogen was refined freely. The used constraints: Caryl—H = 0.93 Å, Uiso(H) = 1.2Ueq(Caryl); Cmethyl—H = 0.96 Å, Uiso(H) = 1.5Ueq(methyl).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
Fig. 2.
A packing diagram viewed along the b axis.

Crystal data

C9H7NO6F(000) = 464
Mr = 225.16Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.3450 (15) Åθ = 10–13°
b = 8.9050 (18) ŵ = 0.14 mm1
c = 14.474 (3) ÅT = 293 K
β = 91.18 (3)°Block, colourless
V = 946.5 (3) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1284 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
graphiteθmax = 25.3°, θmin = 2.7°
ω/2θ scansh = 0→8
Absorption correction: ψ scan (North et al., 1968)k = 0→10
Tmin = 0.950, Tmax = 0.977l = −17→17
1859 measured reflections3 standard reflections every 200 reflections
1717 independent reflections intensity decay: 1.0%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: difference Fourier map
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.03w = 1/[σ2(Fo2) + (0.057P)2 + 0.0354P] where P = (Fo2 + 2Fc2)/3
1717 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.13 e Å3
23 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N1.0387 (2)0.49976 (17)0.29780 (10)0.0475 (4)
O11.30752 (17)0.20120 (16)0.64959 (9)0.0588 (4)
C11.4451 (3)0.2024 (3)0.72271 (15)0.0742 (7)
H1A1.43270.11420.76020.111*
H1B1.43010.29020.76030.111*
H1C1.56380.20360.69620.111*
C21.3171 (2)0.3110 (2)0.58767 (12)0.0442 (4)
O21.4321 (2)0.40512 (19)0.58894 (10)0.0769 (5)
C31.1649 (2)0.30531 (18)0.51817 (11)0.0375 (4)
O31.1685 (2)0.58281 (18)0.29145 (11)0.0730 (5)
O40.9140 (2)0.4969 (2)0.24169 (11)0.0832 (6)
C41.0120 (2)0.21563 (18)0.53024 (11)0.0382 (4)
H4A1.00530.15330.58160.046*
O50.70372 (17)0.03897 (15)0.54893 (9)0.0561 (4)
C50.8694 (2)0.21906 (18)0.46585 (12)0.0373 (4)
O60.57474 (18)0.13777 (16)0.42237 (9)0.0560 (4)
H6B0.475 (4)0.072 (3)0.4318 (19)0.119 (10)*
C60.8793 (2)0.31082 (18)0.38850 (11)0.0380 (4)
H6A0.78500.31310.34470.046*
C71.0324 (2)0.39840 (18)0.37824 (11)0.0368 (4)
C81.1757 (2)0.39837 (18)0.44108 (11)0.0379 (4)
H8A1.27710.45890.43230.046*
C90.7057 (2)0.12519 (19)0.48049 (12)0.0396 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N0.0515 (9)0.0492 (9)0.0419 (9)−0.0049 (8)−0.0003 (7)0.0054 (7)
O10.0542 (8)0.0634 (9)0.0579 (8)−0.0185 (7)−0.0205 (6)0.0167 (7)
C10.0644 (13)0.1017 (19)0.0555 (13)−0.0228 (13)−0.0249 (11)0.0225 (13)
C20.0414 (9)0.0467 (11)0.0443 (10)−0.0094 (9)−0.0046 (8)0.0030 (8)
O20.0626 (9)0.0911 (12)0.0759 (11)−0.0421 (9)−0.0269 (8)0.0280 (9)
C30.0377 (9)0.0344 (9)0.0404 (9)−0.0030 (7)−0.0009 (7)−0.0046 (7)
O30.0685 (10)0.0765 (10)0.0737 (10)−0.0267 (8)−0.0043 (8)0.0321 (8)
O40.0783 (11)0.1067 (14)0.0635 (10)−0.0288 (10)−0.0274 (8)0.0353 (9)
C40.0408 (9)0.0331 (9)0.0407 (9)−0.0040 (7)−0.0017 (7)−0.0005 (7)
O50.0499 (8)0.0578 (8)0.0601 (8)−0.0174 (6)−0.0112 (6)0.0174 (7)
C50.0369 (8)0.0324 (9)0.0424 (9)−0.0027 (7)−0.0020 (7)−0.0053 (7)
O60.0454 (8)0.0569 (9)0.0650 (9)−0.0201 (7)−0.0184 (7)0.0123 (7)
C60.0396 (9)0.0369 (9)0.0373 (9)−0.0014 (8)−0.0049 (7)−0.0040 (7)
C70.0409 (9)0.0355 (9)0.0342 (8)−0.0027 (7)0.0020 (7)−0.0005 (7)
C80.0332 (8)0.0370 (9)0.0436 (10)−0.0037 (7)0.0034 (7)−0.0050 (8)
C90.0420 (9)0.0330 (9)0.0435 (10)−0.0055 (8)−0.0060 (8)−0.0006 (8)

Geometric parameters (Å, °)

N—O31.211 (2)C4—C51.388 (2)
N—O41.2122 (19)C4—H4A0.9300
N—C71.475 (2)O5—C91.254 (2)
O1—C21.329 (2)C5—C61.389 (2)
O1—C11.448 (2)C5—C91.483 (2)
C1—H1A0.9600O6—C91.270 (2)
C1—H1B0.9600O6—H6B0.95 (3)
C1—H1C0.9600C6—C71.379 (2)
C2—O21.190 (2)C6—H6A0.9300
C2—C31.489 (2)C7—C81.377 (2)
C3—C41.393 (2)C8—H8A0.9300
C3—C81.393 (2)
O3—N—O4123.18 (16)C3—C4—H4A119.9
O3—N—C7118.11 (15)C4—C5—C6120.19 (15)
O4—N—C7118.71 (15)C4—C5—C9119.62 (15)
C2—O1—C1116.20 (15)C6—C5—C9120.19 (15)
O1—C1—H1A109.5C9—O6—H6B115.3 (17)
O1—C1—H1B109.5C7—C6—C5118.42 (15)
H1A—C1—H1B109.5C7—C6—H6A120.8
O1—C1—H1C109.5C5—C6—H6A120.8
H1A—C1—H1C109.5C8—C7—C6122.86 (15)
H1B—C1—H1C109.5C8—C7—N119.05 (15)
O2—C2—O1123.71 (17)C6—C7—N118.05 (15)
O2—C2—C3123.86 (17)C7—C8—C3118.28 (15)
O1—C2—C3112.41 (15)C7—C8—H8A120.9
C4—C3—C8120.06 (15)C3—C8—H8A120.9
C4—C3—C2122.07 (15)O5—C9—O6123.82 (16)
C8—C3—C2117.81 (15)O5—C9—C5118.73 (15)
C5—C4—C3120.18 (16)O6—C9—C5117.45 (15)
C5—C4—H4A119.9
C1—O1—C2—O21.4 (3)C5—C6—C7—N−177.71 (14)
C1—O1—C2—C3−177.00 (17)O3—N—C7—C8−2.1 (2)
O2—C2—C3—C4−165.32 (18)O4—N—C7—C8178.43 (17)
O1—C2—C3—C413.1 (2)O3—N—C7—C6175.95 (17)
O2—C2—C3—C812.0 (3)O4—N—C7—C6−3.6 (2)
O1—C2—C3—C8−169.58 (15)C6—C7—C8—C30.1 (2)
C8—C3—C4—C5−0.3 (2)N—C7—C8—C3178.04 (14)
C2—C3—C4—C5176.95 (16)C4—C3—C8—C7−0.1 (2)
C3—C4—C5—C60.7 (2)C2—C3—C8—C7−177.46 (15)
C3—C4—C5—C9−178.81 (15)C4—C5—C9—O5−3.4 (2)
C4—C5—C6—C7−0.6 (2)C6—C5—C9—O5177.14 (16)
C9—C5—C6—C7178.84 (15)C4—C5—C9—O6176.41 (16)
C5—C6—C7—C80.2 (2)C6—C5—C9—O6−3.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O6—H6B···O5i0.95 (3)1.67 (3)2.6206 (19)177.9 (17)
C8—H8A···O2ii0.932.483.406 (2)174

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+3, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FB2119).

References

  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Jin, L.-F. & Xiao, F.-P. (2005). Acta Cryst. E61, o1276–o1277.
  • Morin, J. P., Boutelet, I., Toutain, H. & Fillastre, J. P. (1987). Pathol. Biol.35, 1215–1220. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, G. B. & Rathore, H. G. S. (1980). Indian Drug. Pharm. Ind.15, 35–38.
  • Stacul, F. (2001). Eur. Radiol.11, 690–697. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography