PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o425–o426.
Published online 2009 January 31. doi:  10.1107/S1600536809003201
PMCID: PMC2968308

4-Methyl-N-(3-oxo-2,3-dihydro-1,2-benzisothia­zol-2-yl)benzene­sulfonamide

Abstract

In the title mol­ecule, C14H12N2O3S2, the benzisothia­zolone ring system is essentially planar and forms a dihedral angle of 67.37 (6)° with the plane of the benzene ring. In the crystal structure, mol­ecules are linked via inter­molecular N—H(...)O and C—H(...)O hydrogen bonds to form chains parallel to the b axis.

Related literature

For the chemical and biological properties of 1,2-benzisothia­zol-3(2H)-one derivatives, see: Clerici et al. (2007 [triangle]); Siegemund et al. (2002 [triangle]). For 2-amino-1,2-benzisothia­zol-3(2H)-one derivatives with anti­platelet/spasmolitic effects, see: Vicini et al. (1997 [triangle],2000 [triangle]). For derivatives with anti­microbial properties, see: Vicini et al. (2002 [triangle]); Zani et al. (2004 [triangle]). For the synthesis of the title compound, see: Vicini et al. (2009 [triangle]). For the crystal structures of related compounds, see: Cavalca et al. (1970 [triangle]); Ranganathan et al. (2002 [triangle]); Steinfeld & Kersting (2006 [triangle]); Kim et al. (1996 [triangle]); Xu et al. (2006 [triangle]); Sarma & Mugesh (2007 [triangle]); Kolberg et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o425-scheme1.jpg

Experimental

Crystal data

  • C14H12N2O3S2
  • M r = 320.38
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o425-efi1.jpg
  • a = 8.051 (3) Å
  • b = 7.655 (3) Å
  • c = 23.910 (10) Å
  • β = 98.490 (8)°
  • V = 1457.4 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 296 (2) K
  • 0.28 × 0.26 × 0.12 mm

Data collection

  • Bruker SMART 1000 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.892, T max = 0.957
  • 17685 measured reflections
  • 3521 independent reflections
  • 1888 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.089
  • S = 1.01
  • 3521 reflections
  • 194 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.28 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and SCHAKAL (Keller, 1997 [triangle]); software used to prepare material for publication: SHELXL97 and PARST95 (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003201/lh2764sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003201/lh2764Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Italian MIUR (Ministero dell’Istruzione, dell’Universitá e della Ricerca) is gratefully acknowledged.

supplementary crystallographic information

Comment

Over the past decades a substantial number of 1,2-benzisothiazol-3(2H)-one derivatives have been reported to possess a wide range of biological activities including antimicrobial, antiviral, anticancer, anti-inflammatory, cartilage antidegenerative and other pharmacological activities (Clerici et al., 2007; Siegemund et al., 2002). As part of our program aimed at developing novel biologically active 1,2-benzisothiazol-3(2H)-ones, we have synthesized in the last years 2-amino-1,2-benzisothiazol-3(2H)-one derivatives resulted in the discovery of new compounds active as antiplatelet/spasmolitic agents (Vicini et al., 1997; Vicini et al., 2000) and of compounds endowed with very interesting antimicrobial properties (Vicini et al., 2002; Zani et al., 2004). Recently, in our continuing efforts to find novel effective 2-amino-1,2-benzisothiazol-3(2H)-one derivatives, we have synthesized a series of 2-(phenylsulfonyl)amino-1,2-benzisothiazol-3(2H)-ones which exhibit anti-HIV-1 activity against wild type virus and against viral strains carrying clinically relevant mutations (Vicini et al., 2009). Experimental evidences suggest non classical targets for this novel class of anti-HIV-1 agents. In order to study their binding sites at a molecular level we thought it appropriate to obtain X-ray crystallographic data for a prototype.

The molecule of the title compound (Fig. 1) shows no unusual geometric features, with the S1—N1 (1.7116 (19) Å) and S1—C1 (1.721 (2) Å) bond distances corresponding to those observed in similar structures (Cavalca et al., 1970; Ranganathan et al., 2002; Steinfeld & Kersting, 2006; Kim et al., 1996; Xu et al., 2006; Sarma & Mugesh, 2007). The N1—N2 bond distance (1.364 (2) Å) is just significantly shorter than that observed in 4,5-dimethyl-2-(3-nitrobenzenesulfonylamino)isothiazol-3(2H)-one 1,1-dioxide (1.387 (4) Å; Kolberg et al., 1999). The benzoisothiazole rings system is essentially planar (maximum deviation 0.019 (4) Å for atom C4) and forms a dihedral angle of 67.37 (6)° with the plane of the C8–C13 benzene ring. In the crystal structure (Fig. 2), molecules are linked into chains running parallel to the b axis by intermolecular N—H···O and C—H···O hydrogen bonding interactions (Table 1).

Experimental

The title compound was synthesized as described elsewhere (Vicini et al., 2009). Freshly prepared chlorocarbonylsulfenylchloride (18 mmol) in dried CCl4 (40 ml) was added dropwise to a stirred, ice-cooled solution of 2-tosylhydrazine (20 mmol) in pyridine (18 ml). After 2 h the reaction mixture was allowed to cool to room temperature and the crude product was filtered, purified by base-acid (Na2CO3—HCl) exchange and silica-gel column chromatography (eluent CH2Cl2—EtOH 95:5 v/v). Pale yellow single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The H atoms bound to the N2 atom was located in a difference Fourier map and refined isotropically with the N—H distance constrained to 0.87 (1) Å. All other H atoms were placed at calculated positions and refined using a riding model, with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Crystal packing of the title compound viewed approximately along the b axis. Intemolecular N—H···O and C–H···O hydrogen bonds are shown as dashed lines.

Crystal data

C14H12N2O3S2F(000) = 664
Mr = 320.38Dx = 1.460 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1208 reflections
a = 8.051 (3) Åθ = 3.1–54.7°
b = 7.655 (3) ŵ = 0.38 mm1
c = 23.91 (1) ÅT = 296 K
β = 98.490 (8)°Prism, pale yellow
V = 1457.4 (10) Å30.28 × 0.26 × 0.12 mm
Z = 4

Data collection

Bruker SMART 1000 CCD area-detector diffractometer3521 independent reflections
Radiation source: fine-focus sealed tube1888 reflections with I > 2σ(I)
graphiteRint = 0.041
ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −10→10
Tmin = 0.892, Tmax = 0.957k = −10→10
17685 measured reflectionsl = −31→31

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0354P)2] where P = (Fo2 + 2Fc2)/3
3521 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.28 e Å3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.07092 (8)0.54275 (7)0.15129 (2)0.0674 (2)
S2−0.38794 (7)0.64261 (7)0.12617 (2)0.06196 (18)
O1−0.25352 (19)0.2912 (2)0.21942 (6)0.0740 (4)
O2−0.4086 (2)0.48129 (18)0.09686 (6)0.0795 (5)
O3−0.5189 (2)0.7130 (2)0.15313 (7)0.0826 (5)
N1−0.1134 (2)0.4976 (2)0.17603 (7)0.0585 (5)
N2−0.2283 (3)0.6277 (2)0.17766 (8)0.0692 (5)
H2−0.247 (3)0.670 (3)0.2089 (6)0.085 (8)*
C1−0.1300 (3)0.3352 (2)0.19864 (8)0.0524 (5)
C20.0211 (2)0.2380 (2)0.19334 (8)0.0469 (5)
C30.0556 (3)0.0671 (3)0.21027 (8)0.0584 (5)
H3−0.02210.00280.22690.070*
C40.2040 (3)−0.0051 (3)0.20233 (10)0.0702 (6)
H40.2268−0.12110.21220.084*
C50.3219 (3)0.0936 (3)0.17950 (10)0.0796 (7)
H50.42490.04320.17580.096*
C60.2925 (3)0.2611 (3)0.16232 (10)0.0722 (6)
H60.37240.32500.14670.087*
C70.1378 (3)0.3337 (2)0.16900 (8)0.0527 (5)
C8−0.3251 (2)0.7991 (3)0.08016 (8)0.0544 (5)
C9−0.3198 (3)0.7587 (3)0.02474 (10)0.0815 (7)
H9−0.34540.64660.01110.098*
C10−0.2757 (4)0.8877 (4)−0.01057 (10)0.0977 (9)
H10−0.27290.8606−0.04830.117*
C11−0.2362 (3)1.0529 (4)0.00758 (12)0.0789 (7)
C12−0.2448 (3)1.0894 (3)0.06352 (11)0.0793 (7)
H12−0.22031.20170.07720.095*
C13−0.2886 (3)0.9645 (3)0.09934 (10)0.0708 (6)
H13−0.29350.99220.13690.085*
C14−0.1871 (4)1.1911 (4)−0.03204 (12)0.1226 (12)
H14A−0.16611.2993−0.01200.184*
H14B−0.27661.2068−0.06290.184*
H14C−0.08741.1549−0.04640.184*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0837 (4)0.0494 (3)0.0742 (4)−0.0037 (3)0.0287 (3)0.0081 (3)
S20.0711 (4)0.0537 (3)0.0623 (4)0.0114 (3)0.0140 (3)0.0072 (3)
O10.0561 (9)0.0904 (11)0.0790 (10)0.0106 (8)0.0222 (8)0.0324 (9)
O20.1055 (13)0.0531 (9)0.0784 (11)−0.0047 (8)0.0092 (9)−0.0016 (8)
O30.0789 (11)0.0863 (11)0.0896 (12)0.0260 (9)0.0360 (9)0.0181 (9)
N10.0668 (12)0.0489 (10)0.0626 (11)0.0159 (9)0.0193 (9)0.0127 (8)
N20.0929 (14)0.0660 (12)0.0483 (11)0.0358 (11)0.0092 (10)0.0007 (10)
C10.0538 (13)0.0556 (13)0.0484 (12)0.0027 (10)0.0099 (10)0.0099 (10)
C20.0457 (12)0.0437 (11)0.0508 (11)0.0001 (9)0.0055 (9)0.0021 (9)
C30.0598 (14)0.0514 (13)0.0610 (13)0.0000 (10)−0.0004 (11)0.0053 (10)
C40.0759 (17)0.0548 (13)0.0760 (16)0.0139 (13)−0.0013 (13)−0.0038 (12)
C50.0670 (16)0.0808 (18)0.0911 (18)0.0205 (14)0.0121 (14)−0.0180 (14)
C60.0622 (15)0.0765 (16)0.0834 (16)−0.0070 (13)0.0287 (13)−0.0146 (14)
C70.0552 (13)0.0498 (12)0.0543 (12)−0.0030 (10)0.0122 (10)−0.0045 (9)
C80.0579 (13)0.0556 (12)0.0491 (12)0.0104 (10)0.0056 (10)0.0034 (10)
C90.111 (2)0.0751 (16)0.0603 (16)−0.0120 (15)0.0195 (14)−0.0075 (13)
C100.125 (2)0.119 (2)0.0504 (15)−0.0115 (19)0.0165 (15)0.0051 (16)
C110.0669 (16)0.0886 (19)0.0774 (19)−0.0017 (14)−0.0021 (13)0.0278 (16)
C120.0940 (19)0.0613 (15)0.0808 (19)−0.0026 (13)0.0065 (14)0.0065 (14)
C130.0920 (18)0.0637 (15)0.0571 (14)0.0010 (13)0.0125 (13)−0.0009 (12)
C140.108 (2)0.143 (3)0.114 (2)−0.014 (2)0.0065 (18)0.070 (2)

Geometric parameters (Å, °)

S1—N11.7116 (19)C5—H50.9300
S1—C71.721 (2)C6—C71.394 (3)
S2—O21.4175 (16)C6—H60.9300
S2—O31.4205 (15)C8—C131.364 (3)
S2—N21.647 (2)C8—C91.368 (3)
S2—C81.751 (2)C9—C101.380 (3)
O1—C11.223 (2)C9—H90.9300
N1—N21.364 (2)C10—C111.359 (3)
N1—C11.370 (2)C10—H100.9300
N2—H20.844 (9)C11—C121.378 (3)
C1—C21.448 (3)C11—C141.511 (3)
C2—C31.385 (3)C12—C131.364 (3)
C2—C71.386 (2)C12—H120.9300
C3—C41.355 (3)C13—H130.9300
C3—H30.9300C14—H14A0.9600
C4—C51.387 (3)C14—H14B0.9600
C4—H40.9300C14—H14C0.9600
C5—C61.356 (3)
N1—S1—C789.03 (9)C5—C6—H6121.3
O2—S2—O3120.93 (11)C7—C6—H6121.3
O2—S2—N2109.30 (10)C2—C7—C6120.65 (19)
O3—S2—N2103.69 (10)C2—C7—S1112.83 (15)
O2—S2—C8107.99 (10)C6—C7—S1126.50 (17)
O3—S2—C8109.17 (10)C13—C8—C9120.0 (2)
N2—S2—C8104.56 (10)C13—C8—S2119.47 (17)
N2—N1—C1123.02 (17)C9—C8—S2120.50 (18)
N2—N1—S1119.29 (14)C8—C9—C10118.6 (2)
C1—N1—S1117.36 (13)C8—C9—H9120.7
N1—N2—S2119.16 (15)C10—C9—H9120.7
N1—N2—H2120.6 (16)C11—C10—C9122.7 (2)
S2—N2—H2114.6 (16)C11—C10—H10118.7
O1—C1—N1122.89 (18)C9—C10—H10118.7
O1—C1—C2129.65 (18)C10—C11—C12117.1 (2)
N1—C1—C2107.45 (17)C10—C11—C14121.4 (3)
C3—C2—C7120.20 (18)C12—C11—C14121.5 (3)
C3—C2—C1126.50 (18)C13—C12—C11121.5 (2)
C7—C2—C1113.30 (17)C13—C12—H12119.3
C4—C3—C2119.2 (2)C11—C12—H12119.3
C4—C3—H3120.4C12—C13—C8120.2 (2)
C2—C3—H3120.4C12—C13—H13119.9
C3—C4—C5120.1 (2)C8—C13—H13119.9
C3—C4—H4119.9C11—C14—H14A109.5
C5—C4—H4119.9C11—C14—H14B109.5
C6—C5—C4122.3 (2)H14A—C14—H14B109.5
C6—C5—H5118.8C11—C14—H14C109.5
C4—C5—H5118.8H14A—C14—H14C109.5
C5—C6—C7117.5 (2)H14B—C14—H14C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.85 (2)1.95 (2)2.784 (3)168 (2)
C6—H6···O2ii0.932.563.492 (3)175

Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2764).

References

  • Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cavalca, L., Gaetani, A., Mangia, A. & Pelizzi, G. (1970). Gazz. Chim. Ital.100, 629–638.
  • Clerici, F., Gelmi, M. L., Pellegrino, S. & Pocar, D. (2007). Top. Heterocycl. Chem.9, 179–264.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Keller, E. (1997). SCHAKAL97 University of Freiburg, Germany.
  • Kim, W., Dannaldson, J. & Gates, K. S. (1996). Tetrahedron Lett.37, 5337–5340.
  • Kolberg, A., Sieler, J. & Schulze, B. (1999). J. Heterocycl. Chem.36, 1081–1086.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Ranganathan, S., Muraleedharan, K. M., Bharadwaj, P., Chatterji, D. & Karle, I. (2002). Tetrahedron, 58, 2861–2874.
  • Sarma, B. K. & Mugesh, G. (2007). J. Am. Chem. Soc.129, 8872–8881. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siegemund, A., Taubert, K. & Schulze, B. (2002). Sulfur Rep.23, 279-319.
  • Steinfeld, G. & Kersting, B. (2006). Z. Anorg. Allg. Chem.632, 2010–2016.
  • Vicini, P., Amoretti, L., Tognolini, M., Ballabeni, V. & Barocelli, E. (2000). Bioorg. Med. Chem.8, 2355–2358. [PubMed]
  • Vicini, P., Incerti, M., La Colla, P., Collu, G., Pezzullo, M., Giliberti, G. & Loddo, R. (2009). J. Med. Chem. Submitted.
  • Vicini, P., Manotti, C., Caretta, A. & Amoretti, L. (1997). Arzneim. Forsch. Drug Res.47, 1218–1221. [PubMed]
  • Vicini, P., Zani, F., Cozzini, P. & Doytchinova, I. (2002). Eur. J. Med. Chem.37, 553–564. [PubMed]
  • Xu, F.-L., Lin, Q. & Yin, X.-Q. (2006). Acta Cryst. E62, o496–o497.
  • Zani, F., Vicini, P. & Incerti, M. (2004). Eur. J. Med. Chem.39, 135–140. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography