PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o288–o289.
Published online 2009 January 10. doi:  10.1107/S1600536809000907
PMCID: PMC2968306

Hydro­nium (3-oxo-1-phosphono-1,3-dihydro­isobenzofuran-1-yl)phospho­nate

Abstract

In the title compound, H3O+·C8H7O8P2 , the anions form inversion dimmers by way of pairs of O—H(...)O hydrogen bonds involving the phospho­nic functions and via the hydro­nium cation. Further O—H(...)O links involving the hydronium cation play a prominant part in the cohesion of the crystal structure by building bridges between bis­phospho­nate pairs, forming infinite ribbons along the b-axis direction and by cross-linking these ribbons perpendicularly along the a-axis direction, forming an infinite three-dimensional hydrogen-bond network. The benzene ring and the C=O atoms of the furan ring are disordered over two sets of positions of equal occupancy.

Related literature

For the pharmacological applications of bis­phospho­nates, see Heymann et al. (2004 [triangle]); Rodan & Martin (2000 [triangle]); Fournier et al. (2002 [triangle]); Hamma-Kourbali et al. (2003 [triangle]); Wood et al. (2002 [triangle]); Martin et al. (2001 [triangle], 2002 [triangle]); Sanders et al. (2003 [triangle]). For general background, see Lecouvey et al. (2003a [triangle],b [triangle]); Monteil et al. (2005 [triangle]); Guénin et al. (2004 [triangle]); Lecouvey & Leroux (2000 [triangle]); Vachal et al. (2006 [triangle]). For related structures, see Sylvestre et al. (2001 [triangle]); Lecouvey et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o288-scheme1.jpg

Experimental

Crystal data

  • H3O+·C8H7O8P2
  • M r = 312.10
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o288-efi1.jpg
  • a = 26.2271 (9) Å
  • b = 7.2913 (3) Å
  • c = 15.2621 (6) Å
  • β = 124.103 (2)°
  • V = 2416.66 (16) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.40 mm−1
  • T = 293 (2) K
  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 14205 measured reflections
  • 2139 independent reflections
  • 1627 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.126
  • S = 1.05
  • 2139 reflections
  • 229 parameters
  • 21 restraints
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: HKL (Otwinowski & Minor, 1997 [triangle]); data reduction: HKL; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and CrystalBuilder (Welter, 2006 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000907/dn2420sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000907/dn2420Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jana Sopkova de Oliveira Santos, CERMN, Université de Caen Basse-Normandie, for help during the data processing, and acknowledge Professor Marc Lecouvey for his advice.

supplementary crystallographic information

Comment

The title compound, C8H8O8P2, belongs to the bisphosphonate family (or 1-hydroxymethylene-1,1-bisphosphonic acids or HMBPs). These compounds are synthetic structural analogues of pyrophosphate and are characterized by an enzymatically stable P—C—P group instead of the P—O—P. They are known to have a wide range of applications. They are clinically used in treatement of various bone diseases, such as Pagets disease, osteoporosis, tumor osteolysis or hypercalcemia of malignancy (Heymann et al., 2004; Rodan & Martin, 2000). They are known to induce inhibition of breast and prostate cancer cell proliferation and more recently to inhibit angiogenesis in vitro and in vivo (Fournier et al., 2002; Hamma-Kourbali et al., 2003; Wood et al., 2002). In addition, HMBPs have also activity against several trypanosomatid and apicomplexan parasites (Martin et al., 2001; Martin et al., 2002; Sanders et al., 2003). HMBPs are usually obtained from two different synthetic methods (Lecouvey & Leroux, 2000). Unfortunately, these methods are not always suitable for fragile, aromatic or functionalized substrates. Recently we developed a new method of HMBP synthesis from silylated phosphite and acid chlorides (Lecouvey et al., 2003a,b; Monteil et al., 2005) (or acid anhydrides (Guénin et al., 2004)) that gave an easy access to the obtaining of aromatic and functionalized HMBPs. Using phthalic anhydride as a substrate, a new and original cyclic bisphosphonate was described (Guénin et al., 2004). The cyclic structure of this compound was provided indirectly by IR measurements and further opening of the cycle in basic media. Here we undoubtly proved this cyclic structure, the hydroxy function being part of a lactone. This compound presents a real biological interest as it could act as a prodrug. The hydroxy function which is essential to the HMBP biological properties is in this particular case totally hidden, but could be reformed in the cell by esterase activity. Such acyloxymethyl bis(phosphonate) prodrugs have already been described and the protection shown to be reversible (Vachal et al., 2006).

Bisphosphonate are compounds with super-acid properties, and they easily crystallize as mono salts of sodium or potassium (Sylvestre et al., 2001) or as well characterized solvates (Lecouvey et al., 2002) where crystals generally include water.

The asymetric unit of the title compound is built up from one deprotonated HMBP anion and a H3O+ cation (Fig. 1) which are linked through OW—H···O hydrogen bonds (Table 1). The crystal structure consists of hydrophilic layers that enclose the hydronium cation and bisphosphonate function where molecules linked by pair and less hydrophilic layers made of aromatic rings attached to the cyclic bisphosphonate structure.

Experimental

Synthesis of (3-Oxo-1-phosphono-1,3-dihydro-isobenzofuran-1-yl) -phosphonic acid] was done according to the published procedure (Guénin et al., 2004, compound 3 h). Briefly two equivalents of tris(trimethylsilyl)phosphite were added under N2 to phtalic anhydride in freshly distilled THF at room temperature. The resulting mixture was then heated at 50°C for 12 h. After evaopration of volatile fractions methanol was added to the residue. After 1 h stirring and methanol evaporation the title compound was washed several times with dimethyl ether. Crystallization was done by slow evaporation at room temperature from a concentrated methanol/ water (9/1) solution to give colorless crystal with max. size 0.3 mm, suitable for diffraction.

Refinement

All H atoms attached to C or O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methylene) and O—H = 0.82 Å (hydoxyl) with Uiso(H) = 1.2Ueq(C) (aromatic) and 1.5Ueq(O) for others. Owing to the fact that each of the P2—O22 and P2—O23 bonds seems to be a mixture of single and double bonds and that solvent molecule was 3 times hydrogen donor, the solvent molecule was refined as H3O+ and the bisphoshonate as the basic form. H atoms of the hydronium were located in difference Fourier syntheses and initially refined using restraints (O-H= 0.93 (1)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on the parent O atom.

Disorder of the cyclic structure was modeled with two different positions per disordered atom with occupation factors of 0.5. The two disordered part were refined using the tools, PART and SAME, available in SHELXL-97 (Sheldrick, 2008).

Figures

Fig. 1.
Molecular View of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

H3O+·C8H7O8P2F(000) = 1280
Mr = 312.10Dx = 1.716 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 2338 reflections
a = 26.2271 (9) Åθ = 0.4–25.4°
b = 7.2913 (3) ŵ = 0.40 mm1
c = 15.2621 (6) ÅT = 293 K
β = 124.103 (2)°Parallelepipedic, colourless
V = 2416.66 (16) Å30.30 × 0.10 × 0.10 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer1627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.071
graphiteθmax = 25.4°, θmin = 3.0°
Detector resolution: 9 pixels mm-1h = −31→30
[var phi] and ω scansk = −8→8
14205 measured reflectionsl = −18→17
2139 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0625P)2 + 4.0148P] where P = (Fo2 + 2Fc2)/3
2139 reflections(Δ/σ)max = 0.001
229 parametersΔρmax = 0.33 e Å3
21 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
P10.81092 (4)0.03803 (12)0.41201 (6)0.0268 (3)
O110.79680 (10)−0.0117 (3)0.49420 (18)0.0338 (6)
H110.76150.01910.47210.051*
O120.75192 (9)0.0932 (3)0.30772 (17)0.0338 (6)
H120.75280.05410.25820.051*
O130.84830 (10)−0.1086 (3)0.40406 (18)0.0339 (6)
P20.82143 (3)0.45428 (11)0.46825 (6)0.0250 (3)
O230.80619 (9)0.4158 (3)0.54732 (17)0.0316 (5)
O220.76507 (9)0.5004 (3)0.36019 (17)0.0323 (6)
O210.87289 (10)0.5997 (3)0.50941 (18)0.0339 (6)
H210.86050.68560.46760.051*
C10.85893 (13)0.2462 (4)0.4606 (2)0.0252 (7)
O10.90991 (9)0.2067 (3)0.57008 (15)0.0329 (6)
C2A0.9660 (4)0.2436 (17)0.5830 (7)0.030 (3)0.50
O2A1.0134 (4)0.2317 (14)0.6679 (7)0.058 (3)0.50
C3A0.9536 (4)0.2866 (17)0.4802 (7)0.032 (3)0.50
C40.89030 (14)0.2748 (5)0.4041 (2)0.0295 (7)
C50.86705 (16)0.3115 (5)0.2986 (3)0.0373 (8)
H50.82500.30670.24670.045*
C6A0.9093 (5)0.356 (2)0.2737 (11)0.037 (4)0.50
H6A0.89470.38900.20460.045*0.50
C7A0.9732 (6)0.3515 (19)0.3495 (10)0.056 (4)0.50
H7A1.00030.37360.32960.068*0.50
C8A0.9952 (5)0.3150 (15)0.4523 (9)0.050 (3)0.50
H8A1.03740.30920.50320.060*0.50
C2B0.9639 (5)0.1751 (16)0.5743 (9)0.038 (4)0.50
O2B1.0105 (4)0.1345 (12)0.6576 (8)0.053 (2)0.50
C3B0.9517 (4)0.2220 (17)0.4728 (8)0.030 (3)0.50
C6B0.9075 (6)0.297 (3)0.2668 (12)0.045 (5)0.50
H6B0.89220.30940.19550.055*0.50
C7B0.9703 (6)0.264 (2)0.3393 (11)0.062 (5)0.50
H7B0.99710.27230.31770.074*0.50
C8B0.9926 (5)0.2211 (16)0.4419 (10)0.052 (3)0.50
H8B1.03390.19180.48970.062*0.50
O1W0.85750 (13)−0.1636 (4)0.2188 (2)0.0646 (9)
H1W0.8473−0.16390.26900.097*
H2W0.8410−0.25450.16540.097*
H3W0.9009−0.15440.25750.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0238 (4)0.0260 (5)0.0315 (5)0.0011 (3)0.0160 (4)0.0003 (3)
O110.0267 (12)0.0395 (14)0.0395 (13)0.0046 (10)0.0212 (11)0.0068 (11)
O120.0250 (11)0.0408 (14)0.0277 (11)0.0002 (10)0.0099 (10)−0.0051 (10)
O130.0351 (12)0.0286 (13)0.0461 (14)0.0040 (10)0.0277 (12)−0.0010 (10)
P20.0219 (4)0.0269 (5)0.0268 (4)−0.0013 (3)0.0141 (4)0.0004 (3)
O230.0298 (11)0.0380 (13)0.0329 (12)0.0034 (10)0.0211 (11)0.0044 (10)
O220.0224 (11)0.0385 (14)0.0311 (12)0.0041 (10)0.0120 (10)0.0051 (10)
O210.0259 (11)0.0296 (13)0.0391 (13)−0.0050 (10)0.0138 (11)0.0014 (10)
C10.0174 (14)0.0338 (18)0.0203 (14)0.0011 (13)0.0081 (13)0.0012 (12)
O10.0210 (11)0.0494 (15)0.0257 (11)0.0043 (10)0.0116 (10)0.0059 (10)
C2A0.012 (4)0.046 (9)0.026 (5)0.000 (4)0.007 (4)−0.008 (4)
O2A0.022 (4)0.111 (8)0.032 (4)−0.004 (5)0.009 (3)−0.001 (5)
C3A0.024 (4)0.033 (9)0.038 (5)−0.008 (4)0.016 (4)−0.005 (4)
C40.0237 (16)0.0341 (19)0.0338 (16)0.0004 (14)0.0180 (15)0.0002 (14)
C50.0329 (18)0.046 (2)0.0331 (18)0.0081 (16)0.0186 (16)0.0073 (16)
C6A0.046 (6)0.032 (11)0.039 (5)0.008 (5)0.027 (5)0.006 (5)
C7A0.050 (6)0.086 (12)0.057 (6)−0.004 (7)0.045 (6)0.005 (7)
C8A0.032 (5)0.074 (9)0.048 (5)−0.016 (6)0.026 (4)−0.010 (6)
C2B0.033 (6)0.035 (8)0.043 (6)−0.005 (4)0.019 (5)−0.010 (5)
O2B0.020 (3)0.083 (7)0.038 (4)0.008 (4)0.005 (3)−0.002 (5)
C3B0.024 (4)0.028 (8)0.039 (5)−0.006 (4)0.019 (4)−0.009 (4)
C6B0.073 (8)0.036 (12)0.053 (7)0.017 (6)0.051 (7)0.014 (6)
C7B0.050 (7)0.091 (12)0.070 (8)0.011 (7)0.049 (7)0.024 (8)
C8B0.029 (5)0.074 (9)0.061 (6)−0.001 (6)0.030 (5)0.007 (7)
O1W0.0470 (16)0.081 (2)0.0599 (18)0.0001 (16)0.0266 (15)−0.0147 (16)

Geometric parameters (Å, °)

P1—O131.501 (2)C4—C3B1.395 (9)
P1—O121.526 (2)C5—C6A1.397 (11)
P1—O111.537 (2)C5—C6B1.397 (11)
P1—C11.842 (3)C5—H50.9300
O11—H110.8200C6A—C7A1.405 (11)
O12—H120.8200C6A—H6A0.9300
P2—O231.495 (2)C7A—C8A1.360 (11)
P2—O221.511 (2)C7A—H7A0.9300
P2—O211.546 (2)C8A—H8A0.9300
P2—C11.847 (3)C2B—O2B1.207 (10)
O21—H210.8200C2B—C3B1.437 (11)
C1—O11.469 (3)C3B—C8B1.393 (10)
C1—C41.503 (4)C6B—C7B1.396 (12)
O1—C2A1.397 (9)C6B—H6B0.9300
O1—C2B1.399 (10)C7B—C8B1.366 (11)
C2A—O2A1.193 (9)C7B—H7B0.9300
C2A—C3A1.447 (10)C8B—H8B0.9300
C3A—C8A1.390 (10)O1W—H1W0.9423
C3A—C41.397 (9)O1W—H2W0.9469
C4—C51.391 (4)O1W—H3W0.9450
O13—P1—O12115.47 (13)C3A—C4—C1108.0 (5)
O13—P1—O11111.42 (13)C4—C5—C6A117.4 (6)
O12—P1—O11110.24 (12)C4—C5—C6B117.6 (7)
O13—P1—C1106.83 (13)C6A—C5—C6B18.0 (14)
O12—P1—C1105.50 (13)C4—C5—H5121.3
O11—P1—C1106.80 (13)C6A—C5—H5121.3
P1—O11—H11109.5C6B—C5—H5118.0
P1—O12—H12109.5C5—C6A—C7A122.2 (10)
O23—P2—O22112.47 (12)C5—C6A—H6A118.9
O23—P2—O21111.60 (13)C7A—C6A—H6A118.9
O22—P2—O21112.81 (13)C8A—C7A—C6A119.5 (11)
O23—P2—C1106.84 (13)C8A—C7A—H7A120.3
O22—P2—C1110.08 (13)C6A—C7A—H7A120.3
O21—P2—C1102.39 (13)C7A—C8A—C3A119.0 (10)
P2—O21—H21109.5C7A—C8A—H8A120.5
O1—C1—C4103.8 (2)C3A—C8A—H8A120.5
O1—C1—P1106.1 (2)O2B—C2B—O1119.4 (10)
C4—C1—P1110.7 (2)O2B—C2B—C3B132.5 (10)
O1—C1—P2105.48 (18)O1—C2B—C3B107.6 (8)
C4—C1—P2113.9 (2)C8B—C3B—C4122.0 (8)
P1—C1—P2115.74 (15)C8B—C3B—C2B128.0 (9)
C2A—O1—C2B21.1 (7)C4—C3B—C2B110.0 (7)
C2A—O1—C1109.7 (4)C7B—C6B—C5121.7 (11)
C2B—O1—C1109.7 (5)C7B—C6B—H6B119.2
O2A—C2A—O1120.8 (9)C5—C6B—H6B119.2
O2A—C2A—C3A131.1 (9)C8B—C7B—C6B120.3 (11)
O1—C2A—C3A108.1 (7)C8B—C7B—H7B119.9
C8A—C3A—C4121.7 (8)C6B—C7B—H7B119.9
C8A—C3A—C2A128.8 (9)C7B—C8B—C3B118.1 (10)
C4—C3A—C2A109.1 (7)C7B—C8B—H8B120.9
C5—C4—C3B119.7 (5)C3B—C8B—H8B120.9
C5—C4—C3A119.7 (5)H1W—O1W—H2W119.8
C3B—C4—C3A19.8 (8)H1W—O1W—H3W106.4
C5—C4—C1131.7 (3)H2W—O1W—H3W113.4
C3B—C4—C1107.6 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O11—H11···O23i0.821.692.504 (3)168
O12—H12···O22ii0.821.642.438 (3)164
O21—H21···O13iii0.821.722.522 (3)167
O1W—H1W···O130.942.092.996 (4)162
O1W—H2W···O23iv0.951.902.845 (4)174
O1W—H3W···O2Bv0.941.932.875 (10)177
O1W—H3W···O2Av0.941.952.853 (9)159

Symmetry codes: (i) −x+3/2, −y+1/2, −z+1; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x, y+1, z; (iv) x, −y, z−1/2; (v) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2420).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fournier, P., Boissier, S., Filleur, S., Guglielmi, J., Cabon, F., Colombel, M. & Clezardin, P. (2002). Cancer Res.62, 6538-6544. [PubMed]
  • Guénin, E., Degache, E., Liquier, J. & Lecouvey, M. (2004). Eur. J. Org. Chem. pp. 2983–2987.
  • Hamma-Kourbali, Y., Di Benedetto, M., Ledoux, D., Oudar, O., Leroux, Y., Lecouvey, M. & Kraemer, M. (2003). Biochem. Biophys. Res. Commun.310, 816–823. [PubMed]
  • Heymann, D., Ory, B., Gouin, F., Green, J. R. & Redini, F. (2004). Trends Mol. Med.10 337–343. [PubMed]
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lecouvey, M., Barbey, C., Navaza, A., Neuman, A. & Prangé, T. (2002). Acta Cryst. C58, o521–o524. [PubMed]
  • Lecouvey, M. & Leroux, Y. (2000). Heteroat. Chem 11, 556–561.
  • Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., el Manouni, D., Louriki, M. (2003a). Chem. Abstr 138, 122736.
  • Lecouvey, M., Leroux, Y., Kraemer, M., Crepin, M., el Manouni, D., Louriki, M. (2003b). World Patent WO 03/008425.
  • Martin, M. B., Sanders, J. M., Kendrick, H., de Luca-Fradley, K., Lewis, J. C., Grimley, J. S., Van Brussel, E. M., Olsen, J. R., Meints, G. A., Burzynska, A., Kafarski, P., Croft, S. L. & Oldfield, E. (2002). J. Med. Chem.45, 2904–2914. [PubMed]
  • Martin, M. B., Grimley, J. S., Lewis, J. C., Heath, H. T., 3rd, Bailey, B. N., Kendrick, H., Yardley, V., Caldera, A., Lira, R., Urbina, J. A., Moreno, S. N., Docampo, R., Croft, S. L., Oldfield, E. (2001). J. Med. Chem.44, 909–916. [PubMed]
  • Monteil, M., Guenin, E., Migianu, E., Lutomski, D. & Lecouvey, M. (2005). Tetrahedron, 61, 7528–7537.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Rodan, G. A. & Martin, T. J. (2000). Science, 289, 1508–1514. [PubMed]
  • Sanders, J. M., Gomez, A. O., Mao, J., Meints, G. A., Van Brussel, E. M., Burzynska, A., Kafarski, P., Gonzalez-Pacanowska, D. & Oldfield, E. (2003). J. Med. Chem.46, 5171–5183. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sylvestre, J. P., Nguyen, Q. D. & Leroux, Y. (2001). Heteroat. Chem.12, 73–90.
  • Vachal, P., Hale, J. J., Lu, Z., Streckfuss, E. C., Mills, S. G., MacCoss, M., Yin, D. H., Algayer, K., Manser, K., Kesioglou, F., Ghosh, S. & Alani, L. L. (2006). J. Med. Chem 49, 3060–3063. [PubMed]
  • Welter, R. (2006). Acta Cryst. A62, s252.
  • Wood, J., Bonjean, K., Ruetz, S., Bellahcene, A., Devy, L., Foidart, J. M., Castronovo, V. & Green, J. R. (2002). J. Pharmacol. Exp. Ther.302, 1055–1061. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography