PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): i9.
Published online 2009 January 23. doi:  10.1107/S1600536809001640
PMCID: PMC2968305

Holmium dodeca­iodidoiron-octa­hedro-hexa­holmium, {FeHo6}I12Ho

Abstract

Single crystals of {FeHo6}I12Ho were obtained during the reaction of HoI3 with metallic holmium and iron in a sealed tantalum container. The crystal structure consists of isolated holmium clusters encapsulating a single Fe atom, {FeHo6} (An external file that holds a picture, illustration, etc.
Object name is e-65-000i9-efi2.jpg symmetry). The rare earth metal atoms are surrounded by 12 edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octa­hedra (An external file that holds a picture, illustration, etc.
Object name is e-65-000i9-efi2.jpg symmetry).

Related literature

Reduced rare earth metal halides without and with metal clusters have been reviewed several times, see, for example: Corbett (1973 [triangle], 1996 [triangle], 2000 [triangle], 2006 [triangle]); Hughbanks & Corbett (1988 [triangle]); Meyer (1988 [triangle], 2007 [triangle]); Meyer & Wickleder (2000 [triangle]); Simon (1981 [triangle]); Simon et al. (1991 [triangle]); Wiglusz et al. (2007 [triangle]). For the synthesis of the starting material HoI3, see: Meyer (1991 [triangle]). Isotypic structures have been reported by Hohnstedt (1993 [triangle]), {CHo6}I12Ho, and Palasyuk et al. (2006 [triangle]), {FePr6}I12Pr.

Experimental

Crystal data

  • FeHo7I12
  • M r = 2733.16
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-000i9-efi4.jpg
  • a = 15.2973 (17) Å
  • c = 10.6252 (16) Å
  • V = 2153.3 (5) Å3
  • Z = 3
  • Mo Kα radiation
  • μ = 32.43 mm−1
  • T = 293 (2) K
  • 0.2 × 0.2 × 0.2 mm

Data collection

  • Stoe IPDS-II diffractometer
  • Absorption correction: numerical [X-RED (Stoe & Cie, 2001 [triangle]) and X-SHAPE (Stoe & Cie, 1999 [triangle])] T min = 0.027, T max = 0.071
  • 6920 measured reflections
  • 1166 independent reflections
  • 861 reflections with I > 2σ(I)
  • R int = 0.115

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.096
  • S = 0.97
  • 1166 reflections
  • 32 parameters
  • Δρmax = 2.36 e Å−3
  • Δρmin = −2.44 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2005 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001640/wm2215sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001640/wm2215Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft (DFG), SFB 608 (Complex transition metal compounds with spin and charge degrees of freedom and disorder) and the Fonds der Chemischen Industrie.

supplementary crystallographic information

Comment

Rare earth cluster compounds of the general formula {Z(RE)6}I12RE, where Z is an interstitial transition metal or main group element and RE is a rare earth element, have been well explored by Hughbanks and Corbett (1988) for RE = Sc, Y, Pr and Gd. Additionally, compounds of the formula {Z(RE)6}I12+yAx, where A is an alkali metal (Rb or Cs) with x = 1–4 and y = 0–1 and Z = C, C2, are known for the rare earth elements Pr and Er that were compiled and studied by Meyer & Wickleder (2000) and Wiglusz et al. (2007). With {FeHo6}I12Ho we were able to extend the knowledge of this structure type to the element holmium, where only {CHo6}I12Ho had been synthesized previously by Hohnstedt (1993). Other reviews of reduced rare earth metal halides without and with metal clusters were given, for example, by Corbett (1973, 1996, 2000, 2006), Meyer (1988, 2007), Meyer & Wickleder (2000), Simon (1981) and Simon et al. (1991).

The structure of {FeHo6}I12Ho is isotypic with {FePr6}I12Pr (Palasyuk et al., 2006) and consists of isolated {FeHo6} clusters, i.e. the metal atoms are not shared with other clusters. The {FeHo6} cluster core is surrounded by twelve edge-capping and six terminal iodide ligands that either connect the clusters to each other directly or via HoI6 octahedra (Fig. 1). In {FeHo6}I12Ho, the {FeHo6} octahedra have 3 symmetry, only slightly deviating from ideal octahedral symmetry. The Ho—Ho distances range from 3.6394 (11) to 3.7297 (12) Å. The Ho—I distances vary between 3.0106 (9) and 3.3116 (12) Å.

Experimental

Black, almost cubic crystals of {FeHo6}I12Ho were obtained by the reaction of HoI3 (200 mg) with holmium powder (84 mg, Chempur, 99.9%) and iron powder (10 mg, Merck, p.a.) in a tantalum container at 1273 K for 200 h. HoI3 had been synthesized from stoichiometric amounts of holmium and iodine, followed by sublimation in high vacuum for purification (Meyer, 1991). Due to air and moisture sensitivity of both reagents and products, all handlings were carried out in an argon-filled glove box (M. Braun, Garching, Germany).

Refinement

The displacement parameter for the Fe atom was refined isotropically. The highest peak (2.36 e Å-3) in the final difference Fourier map is 1.20 Å from atom Ho1 and the deepest hole (-2.44 e Å-3) is 2.40 Å from the same atom.

Figures

Fig. 1.
: {FeHo6} clusters connected via HoI6 units, drawn with displacement ellipsoids at the 90% probability level [Symmetry codes: (i) 1 + y, 1 - x + y, 1 - z; (ii) 1 - y, -1 + x-y, z; (iii) -x + 8/3, -y + 1/3, -z + 4/3; (iv) x-y, -1 + x, 1 - z; v) 2 - x, ...

Crystal data

FeHo7I12Dx = 6.323 Mg m3
Mr = 2733.16Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1775 reflections
Hall symbol: -R 3θ = 1.9–28.2°
a = 15.2973 (17) ŵ = 32.43 mm1
c = 10.6252 (16) ÅT = 293 K
V = 2153.3 (5) Å3Cubic, black
Z = 30.2 × 0.2 × 0.2 mm
F(000) = 3393

Data collection

Stoe IPDS-II diffractometer1166 independent reflections
Radiation source: fine-focus sealed tube861 reflections with I > 2σ(I)
graphiteRint = 0.115
ω scansθmax = 28.1°, θmin = 2.5°
Absorption correction: numerical [X-RED (Stoe & Cie, 2001) and X-SHAPE (Stoe & Cie, 1999)]h = −20→19
Tmin = 0.027, Tmax = 0.071k = −19→20
6920 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039w = 1/[σ2(Fo2) + (0.047P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096(Δ/σ)max = 0.001
S = 0.97Δρmax = 2.36 e Å3
1166 reflectionsΔρmin = −2.44 e Å3
32 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00035 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ho11.15739 (5)0.04355 (5)0.63807 (6)0.0153 (2)
Ho21.00000.00001.00000.0213 (4)
I11.05135 (6)−0.13025 (7)0.83941 (7)0.0190 (2)
I21.31674 (7)0.23705 (7)0.50663 (8)0.0242 (3)
Fe11.00000.00000.50000.0132 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ho10.0155 (3)0.0161 (3)0.0147 (3)0.0083 (3)−0.0004 (2)−0.0002 (2)
Ho20.0223 (5)0.0223 (5)0.0194 (7)0.0111 (3)0.0000.000
I10.0202 (5)0.0195 (5)0.0183 (4)0.0106 (4)−0.0006 (3)0.0010 (3)
I20.0167 (5)0.0233 (5)0.0260 (5)0.0050 (4)−0.0030 (3)0.0060 (3)

Geometric parameters (Å, °)

Ho1—Fe12.6056 (7)Ho2—I1vii3.0106 (9)
Ho1—I23.0722 (11)Ho2—I13.0106 (9)
Ho1—I2i3.1144 (11)Ho2—I1ii3.0106 (9)
Ho1—I13.1565 (11)Ho2—I1viii3.0106 (9)
Ho1—I1ii3.1758 (11)I1—Ho1v3.1758 (11)
Ho1—I2iii3.3116 (11)I2—Ho1iv3.1144 (11)
Ho1—Ho1i3.6394 (11)I2—Ho1iii3.3116 (11)
Ho1—Ho1iv3.6394 (11)Fe1—Ho1ix2.6056 (7)
Ho1—Ho1v3.7297 (12)Fe1—Ho1iv2.6056 (7)
Ho1—Ho1ii3.7297 (12)Fe1—Ho1ii2.6056 (7)
Ho2—I1v3.0106 (9)Fe1—Ho1i2.6056 (7)
Ho2—I1vi3.0106 (9)Fe1—Ho1v2.6056 (7)
Fe1—Ho1—I2100.19 (3)I2iii—Ho1—Ho1ii133.68 (2)
Fe1—Ho1—I2i99.12 (3)Ho1i—Ho1—Ho1ii90.0
I2—Ho1—I2i89.813 (17)Ho1iv—Ho1—Ho1ii59.176 (12)
Fe1—Ho1—I198.41 (3)Ho1v—Ho1—Ho1ii60.0
I2—Ho1—I1161.02 (3)I1v—Ho2—I1vi180.0
I2i—Ho1—I190.95 (3)I1v—Ho2—I1vii88.96 (2)
Fe1—Ho1—I1ii97.93 (3)I1vi—Ho2—I1vii91.04 (2)
I2—Ho1—I1ii88.28 (3)I1v—Ho2—I191.04 (2)
I2i—Ho1—I1ii162.91 (3)I1vi—Ho2—I188.96 (2)
I1—Ho1—I1ii85.44 (4)I1vii—Ho2—I1180.0
Fe1—Ho1—I2iii177.02 (3)I1v—Ho2—I1ii91.04 (2)
I2—Ho1—I2iii81.94 (3)I1vi—Ho2—I1ii88.96 (2)
I2i—Ho1—I2iii82.92 (3)I1vii—Ho2—I1ii88.96 (2)
I1—Ho1—I2iii79.33 (3)I1—Ho2—I1ii91.04 (2)
I1ii—Ho1—I2iii80.00 (3)I1v—Ho2—I1viii88.96 (2)
Fe1—Ho1—Ho1i45.702 (10)I1vi—Ho2—I1viii91.04 (2)
I2—Ho1—Ho1i99.07 (3)I1vii—Ho2—I1viii91.04 (2)
I2i—Ho1—Ho1i53.43 (2)I1—Ho2—I1viii88.96 (2)
I1—Ho1—Ho1i96.59 (2)I1ii—Ho2—I1viii180.00 (3)
I1ii—Ho1—Ho1i143.57 (2)Ho2—I1—Ho191.20 (3)
I2iii—Ho1—Ho1i136.24 (3)Ho2—I1—Ho1v90.83 (3)
Fe1—Ho1—Ho1iv45.702 (10)Ho1—I1—Ho1v72.17 (3)
I2—Ho1—Ho1iv54.50 (2)Ho1—I2—Ho1iv72.07 (3)
I2i—Ho1—Ho1iv96.45 (3)Ho1—I2—Ho1iii98.06 (3)
I1—Ho1—Ho1iv144.05 (2)Ho1iv—I2—Ho1iii170.08 (3)
I1ii—Ho1—Ho1iv96.25 (2)Ho1ix—Fe1—Ho1180.00 (2)
I2iii—Ho1—Ho1iv136.44 (2)Ho1ix—Fe1—Ho1iv91.403 (19)
Ho1i—Ho1—Ho1iv61.65 (2)Ho1—Fe1—Ho1iv88.597 (19)
Fe1—Ho1—Ho1v44.298 (10)Ho1ix—Fe1—Ho1ii88.597 (19)
I2—Ho1—Ho1v144.47 (2)Ho1—Fe1—Ho1ii91.403 (19)
I2i—Ho1—Ho1v96.42 (3)Ho1iv—Fe1—Ho1ii88.597 (19)
I1—Ho1—Ho1v54.16 (2)Ho1ix—Fe1—Ho1i91.403 (19)
I1ii—Ho1—Ho1v94.97 (2)Ho1—Fe1—Ho1i88.597 (19)
I2iii—Ho1—Ho1v133.49 (2)Ho1iv—Fe1—Ho1i91.403 (19)
Ho1i—Ho1—Ho1v59.176 (12)Ho1ii—Fe1—Ho1i180.0
Ho1iv—Ho1—Ho1v90.0Ho1ix—Fe1—Ho1v88.597 (19)
Fe1—Ho1—Ho1ii44.298 (10)Ho1—Fe1—Ho1v91.403 (19)
I2—Ho1—Ho1ii95.36 (3)Ho1iv—Fe1—Ho1v180.00 (3)
I2i—Ho1—Ho1ii143.40 (2)Ho1ii—Fe1—Ho1v91.404 (19)
I1—Ho1—Ho1ii95.30 (2)Ho1i—Fe1—Ho1v88.597 (19)
I1ii—Ho1—Ho1ii53.68 (2)

Symmetry codes: (i) y+1, −x+y+1, −z+1; (ii) −y+1, xy−1, z; (iii) −x+8/3, −y+1/3, −z+4/3; (iv) xy, x−1, −z+1; (v) −x+y+2, −x+1, z; (vi) xy, x−1, −z+2; (vii) −x+2, −y, −z+2; (viii) y+1, −x+y+1, −z+2; (ix) −x+2, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2215).

References

  • Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Corbett, J. D. (1973). Rev. Chim. Miner.10, 239–257.
  • Corbett, J. D. (1996). J. Chem. Soc. Dalton Trans. pp. 575–587.
  • Corbett, J. D. (2000). Inorg. Chem.39, 5178–5191. [PubMed]
  • Corbett, J. D. (2006). J. Alloys Compds, 418, 1–20.
  • Hohnstedt, C. (1993). Dissertation, Universität Hannover, Germany.
  • Hughbanks, T. & Corbett, J. D. (1988). Inorg. Chem.27, 2022–2026.
  • Meyer, G. (1988). Chem. Rev.88, 93–107.
  • Meyer, G. (1991). Synthesis of Lanthanide and Actinide Compounds, edited by G. Meyer & L. R. Morss, pp. 135–144. Kluwer: Dordrecht.
  • Meyer, G. (2007). Z. Anorg. Allg. Chem.633, 2537–2552.
  • Meyer, G. & Wickleder, M. S. (2000). Handbook on the Physics and Chemistry of Rare Earths, Vol. 28, edited by K. A. Gscheidner Jr. & L. Eyring, pp. 53–129. Elsevier: Amsterdam.
  • Palasyuk, A., Pantenburg, I. & Meyer, G. (2006). Acta Cryst. E62, i61–i63.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Simon, A. (1981). Angew. Chem. Int. Ed. Engl.20, 1–22.
  • Simon, A., Mattausch, Hj., Miller, G. J., Bauhofer, W. & Kremer, R. (1991). Handbook on the Physics and Chemistry of Rare Earths, Vol. 15, edited by K. A. Gschneidner Jr. & L. Eyring, pp. 191–285. Elsevier: Amsterdam.
  • Stoe & Cie (1999). X-SHAPE Stoe & Cie, Darmstadt, Germany.
  • Stoe & Cie (2001). X-AREA and X-RED Stoe & Cie, Darmstadt, Germany.
  • Wiglusz, R., Pantenburg, I. & Meyer, G. (2007). Z. Anorg. Allg. Chem.633, 1317–1319.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography