PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o338–o339.
Published online 2009 January 17. doi:  10.1107/S1600536809001214
PMCID: PMC2968295

2-(3-Chloro­phen­yl)-4,5-dihydro-1H-imidazole

Abstract

In the title compound, C9H9ClN2, a substituted imidazoline, the six- and five-membered rings are twisted from each other, making a dihedral angle of 17.07 (5)°. In the crystal structure, a short Cl(...)Cl [3.3540 (3) Å] inter­action is observed. Neighbouring mol­ecules are linked together by inter­molecular N—H(...)N hydrogen bonds into a one-dimensional infinite chain along the [101] direction and short Cl(...)Cl contacts link the chains into a three-dimensional network. There is also a significant π-stacking inter­action between the planar sections of the six- and five-membered rings.

Related literature

For bond-length data, see: Allen et al. (1987 [triangle]). For a related structure and the synthesis, see: Stibrany et al. (2004 [triangle]); Kia et al. (2008 [triangle]). For the biological and pharmacological activities of imidazoline derivatives, see, for example: Blancafort (1978 [triangle]); Chan (1993 [triangle]); Vizi (1986 [triangle]); Li et al. (1996 [triangle]); Ueno et al. (1995 [triangle]); Corey & Grogan (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o338-scheme1.jpg

Experimental

Crystal data

  • C9H9ClN2
  • M r = 180.63
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o338-efi1.jpg
  • a = 19.7329 (8) Å
  • b = 39.1479 (18) Å
  • c = 4.3493 (2) Å
  • V = 3359.8 (3) Å3
  • Z = 16
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 100.0 (1) K
  • 0.51 × 0.50 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.825, T max = 0.964
  • 14166 measured reflections
  • 3438 independent reflections
  • 3224 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027
  • wR(F 2) = 0.072
  • S = 1.10
  • 3438 reflections
  • 113 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.15 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1429 Friedel pairs
  • Flack parameter: −0.05 (4)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Selected interatomic distances (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001214/is2379sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001214/is2379Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant (No. 1001/PFIZIK/811012).

supplementary crystallographic information

Comment

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including antihypertensive (Blancafort, 1978), antihyperglycemic (Chan, 1993), antidepressive (Vizi, 1986), antihypercholesterolemic (Li et al., 1996) and antiinflammatory (Ueno et al., 1995) properties. These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan, 1999). Due to these important applications of imidazolines, here we report the crystal structure of the title compound, (I).

In the title compound (Fig. 1), bond lengths (Allen et al., 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany et al., 2004; Kia et al., 2008). The six- and five-membered rings are not coplanar and are twisted from each other by a dihedral angle of 18.07 (5)°. The interesting feature of the crystal structure is the short Cl···Cl [3.3540 (3) Å] (Table 1) which is shorter than the sum of the van der Waals radius of this atom. In the crystal structure (Fig. 2), neighbouring molecules are linked together by intermolecular N—H···N hydrogen bonds (Table 2) into 1-D infinite chains along the [1 0 1] direction and short Cl···Cl contacts link these chains into a 3-D network. There is also a significant π-stacking interaction between the planar sections associated with C1–C3–C4–C5–C6 and C7 of the six- and five-membered rings respectively (Table 1).

Experimental

The synthetic method was based on the previous work (Stibrany et al., 2004), except that 10 mmol of 3-chloro-2-cyanobenzene and 40 mmol of ethylenediamine were used. Single crystals suitable for X-ray diffraction were obtained by evaporation of an acetonitrile solution at room temperature.

Refinement

The H atom bound to N1 was located in a difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined in a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
Fig. 2.
The crystal packing of (I), viewed down the c-axis showing linking of molecules through intermolecular N—H···N hydrogen bonds and short Cl···Cl interactions. The intermolecular interactions are shown ...

Crystal data

C9H9ClN2F(000) = 1504
Mr = 180.63Dx = 1.428 Mg m3
Orthorhombic, Fdd2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: F 2 -2dCell parameters from 8962 reflections
a = 19.7329 (8) Åθ = 2.9–36.7°
b = 39.1479 (18) ŵ = 0.39 mm1
c = 4.3493 (2) ÅT = 100 K
V = 3359.8 (3) Å3Block, colourless
Z = 160.51 × 0.50 × 0.09 mm

Data collection

Bruker APEXII CCD area-detector diffractometer3438 independent reflections
Radiation source: fine-focus sealed tube3224 reflections with I > 2σ(I)
graphiteRint = 0.025
[var phi] and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −31→25
Tmin = 0.825, Tmax = 0.964k = −60→60
14166 measured reflectionsl = −6→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072w = 1/[σ2(Fo2) + (0.037P)2 + 1.1492P] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
3438 reflectionsΔρmax = 0.33 e Å3
113 parametersΔρmin = −0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1429 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.05 (4)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.165233 (12)0.246951 (6)0.02330 (7)0.02846 (7)
N10.00209 (4)0.10678 (2)0.1715 (2)0.01782 (15)
N20.11053 (4)0.11676 (2)0.3205 (2)0.01792 (15)
C10.10570 (4)0.18532 (2)0.0803 (2)0.01732 (16)
H1A0.14050.18030.21720.021*
C20.10314 (4)0.21685 (2)−0.0634 (2)0.01837 (17)
C30.05234 (5)0.22529 (2)−0.2708 (2)0.01901 (17)
H3A0.05170.2465−0.36670.023*
C40.00232 (5)0.20104 (3)−0.3313 (3)0.01959 (17)
H4A−0.03230.2062−0.46860.024*
C50.00358 (5)0.16926 (2)−0.1890 (2)0.01739 (16)
H5A−0.03010.1533−0.23130.021*
C60.05544 (4)0.16118 (2)0.0174 (2)0.01498 (14)
C70.05755 (4)0.12791 (2)0.1766 (2)0.01505 (15)
C80.01553 (5)0.07848 (3)0.3841 (3)0.02052 (18)
H8A0.00530.05660.29070.025*
H8B−0.01020.08090.57280.025*
C90.09225 (5)0.08268 (3)0.4421 (3)0.02013 (18)
H9A0.10210.08130.66020.024*
H9B0.11750.06500.33640.024*
H1N1−0.0392 (8)0.1159 (4)0.148 (4)0.036 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.01974 (10)0.01899 (11)0.04665 (16)−0.00554 (8)−0.00483 (11)0.00392 (11)
N10.0124 (3)0.0167 (4)0.0244 (4)−0.0016 (3)−0.0022 (3)0.0014 (3)
N20.0132 (3)0.0161 (3)0.0245 (4)0.0007 (3)−0.0013 (3)0.0019 (3)
C10.0122 (3)0.0165 (4)0.0232 (4)0.0008 (3)−0.0002 (3)−0.0003 (3)
C20.0139 (3)0.0166 (4)0.0246 (4)−0.0010 (3)0.0019 (3)−0.0004 (3)
C30.0189 (4)0.0171 (4)0.0210 (4)0.0013 (3)0.0025 (3)0.0013 (3)
C40.0180 (4)0.0211 (4)0.0196 (4)0.0016 (3)−0.0018 (3)0.0000 (3)
C50.0148 (3)0.0192 (4)0.0181 (4)0.0000 (3)−0.0006 (3)−0.0007 (3)
C60.0120 (3)0.0149 (4)0.0180 (4)0.0012 (3)0.0018 (3)−0.0014 (3)
C70.0117 (3)0.0158 (4)0.0177 (4)−0.0003 (3)0.0011 (3)−0.0016 (3)
C80.0164 (4)0.0188 (4)0.0264 (4)−0.0021 (3)−0.0011 (3)0.0042 (3)
C90.0159 (4)0.0184 (4)0.0260 (5)0.0002 (3)−0.0008 (3)0.0039 (3)

Geometric parameters (Å, °)

Cl1—C21.7413 (10)C3—H3A0.9300
N1—C71.3719 (12)C4—C51.3897 (14)
N1—C81.4675 (13)C4—H4A0.9300
N1—H1N10.896 (16)C5—C61.3976 (13)
N2—C71.2942 (12)C5—H5A0.9300
N2—C91.4799 (13)C6—C71.4759 (13)
C1—C21.3844 (14)C8—C91.5436 (13)
C1—C61.3969 (12)C8—H8A0.9700
C1—H1A0.9300C8—H8B0.9700
C2—C31.3884 (14)C9—H9A0.9700
C3—C41.3944 (14)C9—H9B0.9700
Cl1···Cl1i3.3540 (3)C4···C6iii3.3997 (15)
C1···C3ii3.3945 (12)C5···C7iii3.3716 (12)
C1···C4ii3.3301 (15)
C7—N1—C8107.50 (7)C1—C6—C5119.51 (8)
C7—N1—H1N1119.1 (10)C1—C6—C7119.03 (8)
C8—N1—H1N1122.5 (11)C5—C6—C7121.45 (8)
C7—N2—C9106.25 (7)N2—C7—N1116.68 (8)
C2—C1—C6119.26 (9)N2—C7—C6123.17 (8)
C2—C1—H1A120.4N1—C7—C6120.13 (8)
C6—C1—H1A120.4N1—C8—C9101.53 (7)
C1—C2—C3122.13 (9)N1—C8—H8A111.5
C1—C2—Cl1118.68 (7)C9—C8—H8A111.5
C3—C2—Cl1119.19 (8)N1—C8—H8B111.5
C2—C3—C4118.15 (9)C9—C8—H8B111.5
C2—C3—H3A120.9H8A—C8—H8B109.3
C4—C3—H3A120.9N2—C9—C8106.06 (8)
C5—C4—C3120.84 (9)N2—C9—H9A110.5
C5—C4—H4A119.6C8—C9—H9A110.5
C3—C4—H4A119.6N2—C9—H9B110.5
C4—C5—C6120.12 (8)C8—C9—H9B110.5
C4—C5—H5A119.9H9A—C9—H9B108.7
C6—C5—H5A119.9
C6—C1—C2—C3−0.48 (14)C9—N2—C7—C6−179.11 (8)
C6—C1—C2—Cl1178.76 (7)C8—N1—C7—N29.55 (12)
C1—C2—C3—C40.66 (14)C8—N1—C7—C6−171.73 (8)
Cl1—C2—C3—C4−178.58 (8)C1—C6—C7—N2−15.38 (13)
C2—C3—C4—C5−0.37 (15)C5—C6—C7—N2166.02 (9)
C3—C4—C5—C6−0.09 (15)C1—C6—C7—N1165.98 (9)
C2—C1—C6—C50.00 (13)C5—C6—C7—N1−12.62 (13)
C2—C1—C6—C7−178.62 (8)C7—N1—C8—C9−13.33 (10)
C4—C5—C6—C10.28 (14)C7—N2—C9—C8−8.35 (11)
C4—C5—C6—C7178.87 (9)N1—C8—C9—N213.08 (10)
C9—N2—C7—N1−0.43 (11)

Symmetry codes: (i) −x+1/2, −y+1/2, z; (ii) x, y, z+1; (iii) x, y, z−1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2iv0.896 (16)2.118 (16)3.0113 (11)174.5 (15)

Symmetry codes: (iv) x−1/4, −y+1/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2379).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Blancafort, P. (1978). Drugs Future, 3, 592–592.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chan, S. (1993). Clin. Sci.85, 671–677. [PubMed]
  • Corey, E. J. & Grogan, M. J. (1999). Org. Lett.1, 157–160. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406. [PMC free article] [PubMed]
  • Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.
  • Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol.17, 597–603. [PubMed]
  • Vizi, E. S. (1986). Med. Res. Rev.6, 431–449. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography