PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o224–o225.
Published online 2009 January 8. doi:  10.1107/S1600536808043742
PMCID: PMC2968277

1H,3H-Imidazolium (R,S)-camphor-10-sulfonate

Abstract

The title compound, C3H5N2 +·C10H15O4S, comprises two crystallographically independent ion pairs (A and B) in the asymmetric unit with slightly different conformations due to the disordered methyl groups in the anion of molecule A. Two intra­molecular C—H(...)O hydrogen bonds generate S(6) ring motifs. In mol­ecule A, the methyl groups are disordered over two sets of positions with a site-ocuppancy ratio of 0.547 (9):0.453 (9). Extensive inter­molecular N—H(...)O and C—H(...)O hydrogen-bonding inter­actions occur in the crystal structure which link the mol­ecules into a two-dimensional network parallel to the (100) plane.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For general background, see: Fukumoto et al. (2005 [triangle]); Jeremić et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o224-scheme1.jpg

Experimental

Crystal data

  • C3H5N2 +·C10H15O4S
  • M r = 300.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o224-efi1.jpg
  • a = 9.1362 (2) Å
  • b = 12.0126 (2) Å
  • c = 13.2526 (3) Å
  • β = 90.757 (1)°
  • V = 1454.34 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 100.0 (1) K
  • 0.46 × 0.45 × 0.19 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.900, T max = 0.956
  • 25973 measured reflections
  • 9954 independent reflections
  • 9652 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.083
  • S = 1.07
  • 9954 reflections
  • 355 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.34 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 4199 Friedel pairs
  • Flack parameter: 0.01 (3)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043742/ww2136sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043742/ww2136Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MBAR, EMO and NSL thank the Malaysian Government and Universiti Putra Malaysia for the Research Universiti Grant Scheme (RUGS 2007) grant No. 91183. MBAR would like to thank Professor Kenneth R. Seddon for the opportunity to conduct this research by SLN at QUILL. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

The title compound, (I, Fig. 1), is based on alkyl-imidazole with plant acid as anion (halogen-free). Crystallization of the 1,3-dihydrogenimidazolium camphor-10 -sulfonate having a sulfonate ion as a counter-ion was achieved by a slow evaporation of methanol at ambient temperature. Camphorsulfonate anion was selected due to their low toxicity for biocatalysis applications (Jeremić et al., 2008). The title compound has strong ion-ion interactions between cations and anions, which was attributed to an increase in the van der Waals attraction between the alkyl groups (Fukumoto et al., 2005).

In the title compound (I, Fig. 1), the bond lengths (Allen et al., 1987) and angles are within the normal ranges. There are two intramolecular C—H···O interactions generating six-membered rings with S(6) ring motifs (Bernstein et al., 1995). In the molecule A, the methyl groups are disordered over two positions and refined isotropically with site-ocuppancy ratio of 0.547 (9)/0.453 (9). In the crystal structure, molecules are linked together into 1-D infinite chains along the b axis, and are also linked into 1-D infinite chains along the c axis, thus forming a 2-D network which is parallel to the (100)-plane. The crystal structure is stabilized by intermolecular N—H···O (x 6) and C—H···O (x 9) hydrogen bonds, and weak intermlecular C—H···π interactions (Cg1 is the centroid of the N1B/C11B/N2B/C13B/C12B ring).

Experimental

(R)-(-)-Camphor-10-sulfonic acid (0.05 mol, 7.504 g) was added to imidazole (0.05 mol, 3.404 g) which was first dissolved in 20 ml of methanol. The mixture was stirred (150 rpm) for 2 h at room temperature and the excess methanol was removed in vacuo at 343 K. The final product was obtained as a white solid with 97% yield. It was then dried under high vacuum for 2 days. m.p. 559.77 K. Single Crystals suitable for X-ray analysis was obtained from methanol. Anal. Calc.: C, 51.98; H, 6.71; N, 9.33; O, 21.31; S, 10.67. Found: C, 51.97; H, 6.77; N, 9.11; O, 21.38; S, 10.77%.

Refinement

All the hydrogen atoms were positioned geometrically and constrained to ride with the parent atoms with Uiso(H) = 1.2 or 1.5 Ueq (O or N). In molecule A, the methyl groups are disordered over two positions and refined isotropically with a site-occupancy ratio of 0.547 (9)/0.453 (9), because anisotropic refinement casues non-positive definiteness for these atoms. Sufficient anomalous scattering due to the presence of S atoms gave the correct value of the Flack parameter which lead to the correct absolute configuration given in Fig. 1. Floating origin restraint was applied automatically by SHELXL program for this chiral space group, P21.

Figures

Fig. 1.
The molecular structure of (I) with atom labels and 30% probability ellipsoids for non-H atoms. Intramolecular interactions are shown as dashed lines. Open bonds show the minor component.
Fig. 2.
The crystal packing of (I), viewed down the a-axis showing infinite 1-D chains along the b and c-axes of the unit cell. Intermolecular interactions are shown as dashed lines. Only the major component of molecule A is shown.

Crystal data

C3H5N2+·C10H15O4SF(000) = 640
Mr = 300.37Dx = 1.372 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 9809 reflections
a = 9.1362 (2) Åθ = 2.3–38.9°
b = 12.0126 (2) ŵ = 0.24 mm1
c = 13.2526 (3) ÅT = 100 K
β = 90.757 (1)°Block, colourless
V = 1454.34 (5) Å30.46 × 0.45 × 0.19 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer9954 independent reflections
Radiation source: fine-focus sealed tube9652 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.900, Tmax = 0.956k = −17→18
25973 measured reflectionsl = −17→20

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.083w = 1/[σ2(Fo2) + (0.047P)2 + 0.3247P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
9954 reflectionsΔρmax = 0.53 e Å3
355 parametersΔρmin = −0.34 e Å3
1 restraintAbsolute structure: Flack (1983), 4199 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (3)

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S1A1.27663 (3)0.30766 (2)−0.033021 (19)0.01112 (5)
O1A1.29170 (10)0.19188 (8)0.00012 (7)0.01629 (16)
O2A1.37452 (10)0.38323 (9)0.02074 (7)0.01975 (18)
O3A1.28934 (9)0.31774 (8)−0.14282 (6)0.01632 (16)
O4A1.17524 (10)0.29350 (10)0.20717 (7)0.0227 (2)
C1A1.09258 (13)0.35344 (13)−0.00674 (10)0.0230 (3)
H1AA1.09900.42900.01890.028*
H1AB1.03960.3569−0.07060.028*
C2A1.00007 (12)0.28760 (11)0.06562 (9)0.0161 (2)
C3A1.05299 (13)0.27735 (10)0.17433 (9)0.0146 (2)
C4A0.91989 (14)0.24497 (12)0.23603 (10)0.0206 (2)
H4AA0.89900.30050.28700.025*
H4AB0.93380.17330.26840.025*
C5A0.79837 (14)0.24006 (14)0.15568 (11)0.0238 (3)
H5AA0.69910.24650.18220.029*
C6A0.8249 (2)0.13498 (19)0.09277 (16)0.0449 (5)
H6AA0.74410.12110.04630.054*
H6AB0.83900.07030.13560.054*
C7A0.96719 (18)0.16430 (16)0.03538 (13)0.0334 (4)
H7AA0.95220.1576−0.03700.040*
H7AB1.04700.11580.05600.040*
C8A0.84295 (13)0.33538 (17)0.08391 (10)0.0290 (3)
C9A0.7508 (3)0.3652 (4)−0.0072 (2)0.0259 (7)*0.547 (9)
H9AA0.73690.3004−0.04860.039*0.547 (9)
H9AB0.79930.4219−0.04520.039*0.547 (9)
H9AC0.65740.39230.01430.039*0.547 (9)
C9C0.7443 (3)0.3212 (4)−0.0153 (2)0.0206 (8)*0.453 (9)
H9CA0.75180.2461−0.03950.031*0.453 (9)
H9CB0.77750.3717−0.06630.031*0.453 (9)
H9CC0.64410.33740.00010.031*0.453 (9)
C10A0.8557 (3)0.4563 (2)0.1473 (2)0.0172 (6)*0.547 (9)
H10A0.91960.44700.20470.026*0.547 (9)
H10B0.76040.47830.16940.026*0.547 (9)
H10C0.89450.51270.10380.026*0.547 (9)
C10C0.8303 (4)0.4391 (3)0.1224 (3)0.0212 (8)*0.453 (9)
H10D0.75100.47730.08900.032*0.453 (9)
H10E0.91970.47930.11230.032*0.453 (9)
H10F0.81100.43440.19340.032*0.453 (9)
N1A0.44499 (11)0.14307 (9)0.76374 (8)0.01573 (18)*
H1AC0.38850.19770.77870.019*
N2A0.56872 (12)0.02395 (9)0.67786 (8)0.01563 (18)
H2AA0.6054−0.01140.62780.019*
C11A0.47931 (13)0.11135 (11)0.67088 (9)0.0155 (2)
H11A0.44660.14450.61130.019*
C12A0.51470 (14)0.07405 (12)0.83219 (9)0.0176 (2)
H12A0.50910.07800.90210.021*
C13A0.59299 (14)−0.00070 (11)0.77835 (10)0.0177 (2)
H13A0.6516−0.05750.80420.021*
S1B1.29554 (3)0.33636 (2)0.532398 (19)0.01117 (5)
O1B1.30840 (10)0.45125 (8)0.49628 (7)0.01658 (16)
O2B1.32660 (9)0.32743 (8)0.64062 (6)0.01474 (15)
O3B1.37993 (10)0.25718 (8)0.47370 (7)0.01687 (17)
O4B0.95635 (13)0.47418 (10)0.40752 (8)0.0267 (2)
C1B1.10979 (12)0.29462 (11)0.51462 (9)0.0165 (2)
H1BA1.09020.29160.44260.020*
H1BB1.10050.21930.54020.020*
C2B0.98994 (12)0.36491 (10)0.56233 (9)0.0141 (2)
C3B0.91119 (14)0.44242 (11)0.48786 (10)0.0186 (2)
C4B0.76277 (16)0.46991 (13)0.53347 (11)0.0233 (3)
H4BA0.68280.44480.49030.028*
H4BB0.75260.54910.54560.028*
C5B0.76907 (13)0.40436 (11)0.63263 (10)0.0185 (2)
H5BA0.67340.38970.66250.022*
C6B0.87688 (15)0.46647 (12)0.70195 (11)0.0217 (2)
H6BA0.87320.43810.77040.026*
H6BB0.85630.54570.70260.026*
C7B1.02824 (14)0.44215 (12)0.65360 (11)0.0199 (2)
H7BA1.09330.40490.70120.024*
H7BB1.07430.51040.63110.024*
C8B0.85559 (12)0.29851 (11)0.60317 (9)0.0154 (2)
C9B0.89102 (17)0.22292 (13)0.69361 (11)0.0244 (3)
H9BA0.80360.18540.71430.037*
H9BB0.92850.26720.74850.037*
H9BC0.96310.16900.67460.037*
C10B0.78064 (14)0.22785 (12)0.52073 (11)0.0207 (2)
H10G0.69920.18880.54900.031*
H10H0.84940.17520.49450.031*
H10I0.74650.27550.46720.031*
N1B0.42936 (11)0.12226 (9)0.17235 (8)0.01373 (17)
H1BC0.38020.15370.12440.016*
N2B0.56682 (11)0.00652 (9)0.25337 (9)0.01636 (19)
H2BA0.6221−0.04960.26680.020*
C11B0.50552 (13)0.02832 (11)0.16403 (9)0.0153 (2)
H11B0.5143−0.01450.10600.018*
C12B0.44173 (13)0.16124 (11)0.27007 (9)0.0154 (2)
H12B0.39920.22530.29600.018*
C13B0.52797 (14)0.08788 (11)0.32086 (9)0.0171 (2)
H13B0.55560.09180.38860.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S1A0.01090 (10)0.01332 (11)0.00917 (10)0.00054 (8)0.00172 (8)0.00011 (8)
O1A0.0197 (4)0.0149 (4)0.0142 (4)0.0028 (3)−0.0013 (3)0.0028 (3)
O2A0.0213 (4)0.0211 (5)0.0168 (4)−0.0046 (3)−0.0011 (3)−0.0040 (3)
O3A0.0219 (4)0.0171 (4)0.0101 (3)0.0017 (3)0.0030 (3)0.0002 (3)
O4A0.0188 (4)0.0302 (6)0.0189 (4)0.0012 (4)−0.0020 (3)−0.0005 (4)
C1A0.0152 (5)0.0307 (7)0.0232 (6)0.0082 (5)0.0075 (4)0.0153 (5)
C2A0.0115 (4)0.0247 (6)0.0120 (5)0.0004 (4)0.0019 (3)0.0015 (4)
C3A0.0164 (5)0.0129 (5)0.0146 (5)0.0023 (4)0.0019 (4)0.0019 (4)
C4A0.0213 (5)0.0236 (6)0.0171 (5)0.0022 (5)0.0067 (4)0.0062 (5)
C5A0.0161 (5)0.0345 (8)0.0211 (6)−0.0054 (5)0.0068 (4)−0.0012 (5)
C6A0.0342 (8)0.0530 (12)0.0480 (10)−0.0286 (8)0.0241 (8)−0.0278 (9)
C7A0.0280 (7)0.0392 (9)0.0333 (8)−0.0180 (6)0.0153 (6)−0.0200 (7)
C8A0.0121 (5)0.0538 (10)0.0212 (6)0.0088 (6)0.0043 (4)0.0164 (6)
N2A0.0192 (4)0.0139 (5)0.0138 (4)0.0027 (3)0.0020 (3)0.0009 (3)
C11A0.0179 (5)0.0141 (5)0.0146 (5)0.0019 (4)0.0010 (4)0.0013 (4)
C12A0.0200 (5)0.0203 (6)0.0124 (5)0.0010 (4)0.0012 (4)0.0017 (4)
C13A0.0195 (5)0.0186 (6)0.0151 (5)0.0032 (4)0.0009 (4)0.0034 (4)
S1B0.01270 (10)0.01178 (11)0.00904 (10)0.00008 (8)0.00085 (8)−0.00100 (8)
O1B0.0207 (4)0.0140 (4)0.0151 (4)−0.0021 (3)0.0020 (3)0.0028 (3)
O2B0.0204 (4)0.0147 (4)0.0091 (3)0.0010 (3)−0.0011 (3)−0.0004 (3)
O3B0.0161 (4)0.0197 (4)0.0148 (4)0.0036 (3)0.0019 (3)−0.0045 (3)
O4B0.0345 (5)0.0241 (5)0.0217 (5)−0.0021 (4)0.0052 (4)0.0054 (4)
C1B0.0143 (4)0.0160 (5)0.0192 (5)−0.0007 (4)0.0007 (4)−0.0069 (4)
C2B0.0132 (4)0.0127 (5)0.0164 (5)−0.0005 (3)0.0020 (4)−0.0034 (4)
C3B0.0216 (5)0.0129 (5)0.0213 (6)−0.0010 (4)0.0023 (4)−0.0001 (4)
C4B0.0219 (6)0.0204 (6)0.0277 (7)0.0068 (5)0.0021 (5)0.0034 (5)
C5B0.0154 (5)0.0174 (6)0.0230 (6)0.0023 (4)0.0050 (4)−0.0003 (4)
C6B0.0206 (5)0.0207 (6)0.0239 (6)0.0017 (4)0.0057 (5)−0.0081 (5)
C7B0.0170 (5)0.0200 (6)0.0227 (6)−0.0009 (4)0.0038 (4)−0.0099 (5)
C8B0.0155 (4)0.0143 (5)0.0165 (5)−0.0011 (4)0.0031 (4)0.0005 (4)
C9B0.0316 (7)0.0209 (7)0.0208 (6)0.0027 (5)0.0048 (5)0.0050 (5)
C10B0.0185 (5)0.0195 (6)0.0243 (6)−0.0061 (4)0.0019 (4)−0.0039 (5)
N1B0.0142 (4)0.0156 (5)0.0114 (4)0.0014 (3)−0.0004 (3)0.0017 (3)
N2B0.0139 (4)0.0138 (5)0.0214 (5)0.0016 (3)0.0000 (4)0.0036 (4)
C11B0.0145 (5)0.0149 (5)0.0165 (5)0.0000 (4)0.0026 (4)−0.0016 (4)
C12B0.0167 (5)0.0162 (5)0.0132 (5)0.0013 (4)0.0020 (4)−0.0015 (4)
C13B0.0184 (5)0.0193 (6)0.0136 (5)−0.0026 (4)−0.0007 (4)0.0029 (4)

Geometric parameters (Å, °)

S1A—O2A1.4542 (10)C11A—H11A0.9300
S1A—O1A1.4645 (9)C12A—C13A1.3566 (18)
S1A—O3A1.4663 (8)C12A—H12A0.9300
S1A—C1A1.8074 (12)C13A—H13A0.9300
O4A—C3A1.2090 (15)S1B—O3B1.4560 (9)
C1A—C2A1.5102 (17)S1B—O2B1.4622 (8)
C1A—H1AA0.9700S1B—O1B1.4661 (9)
C1A—H1AB0.9700S1B—C1B1.7822 (12)
C2A—C3A1.5185 (16)O4B—C3B1.2088 (17)
C2A—C7A1.563 (2)C1B—C2B1.5264 (16)
C2A—C8A1.5678 (17)C1B—H1BA0.9700
C3A—C4A1.5248 (17)C1B—H1BB0.9700
C4A—C5A1.529 (2)C2B—C3B1.5297 (18)
C4A—H4AA0.9700C2B—C7B1.5606 (18)
C4A—H4AB0.9700C2B—C8B1.5663 (16)
C5A—C6A1.534 (2)C3B—C4B1.5280 (19)
C5A—C8A1.547 (2)C4B—C5B1.532 (2)
C5A—H5AA0.9800C4B—H4BA0.9700
C6A—C7A1.555 (2)C4B—H4BB0.9700
C6A—H6AA0.9700C5B—C6B1.532 (2)
C6A—H6AB0.9700C5B—C8B1.5499 (18)
C7A—H7AA0.9700C5B—H5BA0.9800
C7A—H7AB0.9700C6B—C7B1.5593 (18)
C8A—C10C1.352 (5)C6B—H6BA0.9700
C8A—C9A1.506 (3)C6B—H6BB0.9700
C8A—C9C1.594 (3)C7B—H7BA0.9700
C8A—C10A1.681 (4)C7B—H7BB0.9700
C9A—H9AA0.9600C8B—C9B1.5347 (19)
C9A—H9AB0.9600C8B—C10B1.5374 (18)
C9A—H9AC0.9600C9B—H9BA0.9600
C9C—H9CA0.9600C9B—H9BB0.9600
C9C—H9CB0.9600C9B—H9BC0.9600
C9C—H9CC0.9600C10B—H10G0.9600
C10A—H10A0.9600C10B—H10H0.9600
C10A—H10B0.9600C10B—H10I0.9600
C10A—H10C0.9600N1B—C11B1.3311 (16)
C10C—H10D0.9600N1B—C12B1.3803 (15)
C10C—H10E0.9600N1B—H1BC0.8600
C10C—H10F0.9600N2B—C11B1.3291 (16)
N1A—C11A1.3297 (16)N2B—C13B1.3747 (17)
N1A—C12A1.3786 (17)N2B—H2BA0.8600
N1A—H1AC0.8600C11B—H11B0.9300
N2A—C11A1.3327 (16)C12B—C13B1.3552 (18)
N2A—C13A1.3793 (16)C12B—H12B0.9300
N2A—H2AA0.8600C13B—H13B0.9300
O2A—S1A—O1A113.02 (6)C13A—N2A—H2AA125.5
O2A—S1A—O3A112.24 (6)N1A—C11A—N2A108.26 (11)
O1A—S1A—O3A111.57 (5)N1A—C11A—H11A125.9
O2A—S1A—C1A106.46 (7)N2A—C11A—H11A125.9
O1A—S1A—C1A108.37 (6)C13A—C12A—N1A107.11 (11)
O3A—S1A—C1A104.61 (6)C13A—C12A—H12A126.4
C2A—C1A—S1A119.53 (9)N1A—C12A—H12A126.4
C2A—C1A—H1AA107.4C12A—C13A—N2A106.65 (11)
S1A—C1A—H1AA107.4C12A—C13A—H13A126.7
C2A—C1A—H1AB107.4N2A—C13A—H13A126.7
S1A—C1A—H1AB107.4O3B—S1B—O2B112.27 (5)
H1AA—C1A—H1AB107.0O3B—S1B—O1B113.28 (6)
C1A—C2A—C3A118.10 (11)O2B—S1B—O1B111.96 (5)
C1A—C2A—C7A116.16 (11)O3B—S1B—C1B104.81 (5)
C3A—C2A—C7A102.95 (11)O2B—S1B—C1B106.33 (5)
C1A—C2A—C8A115.32 (11)O1B—S1B—C1B107.57 (6)
C3A—C2A—C8A99.42 (9)C2B—C1B—S1B118.47 (8)
C7A—C2A—C8A102.31 (12)C2B—C1B—H1BA107.7
O4A—C3A—C2A127.55 (11)S1B—C1B—H1BA107.7
O4A—C3A—C4A125.97 (11)C2B—C1B—H1BB107.7
C2A—C3A—C4A106.46 (10)S1B—C1B—H1BB107.7
C3A—C4A—C5A102.31 (10)H1BA—C1B—H1BB107.1
C3A—C4A—H4AA111.3C1B—C2B—C3B113.79 (10)
C5A—C4A—H4AA111.3C1B—C2B—C7B119.69 (10)
C3A—C4A—H4AB111.3C3B—C2B—C7B103.70 (10)
C5A—C4A—H4AB111.3C1B—C2B—C8B115.55 (10)
H4AA—C4A—H4AB109.2C3B—C2B—C8B99.72 (9)
C4A—C5A—C6A106.96 (14)C7B—C2B—C8B101.75 (9)
C4A—C5A—C8A101.83 (11)O4B—C3B—C4B126.53 (13)
C6A—C5A—C8A103.31 (13)O4B—C3B—C2B126.68 (12)
C4A—C5A—H5AA114.5C4B—C3B—C2B106.78 (10)
C6A—C5A—H5AA114.5C3B—C4B—C5B101.81 (10)
C8A—C5A—H5AA114.5C3B—C4B—H4BA111.4
C5A—C6A—C7A102.63 (13)C5B—C4B—H4BA111.4
C5A—C6A—H6AA111.2C3B—C4B—H4BB111.4
C7A—C6A—H6AA111.2C5B—C4B—H4BB111.4
C5A—C6A—H6AB111.2H4BA—C4B—H4BB109.3
C7A—C6A—H6AB111.2C6B—C5B—C4B106.29 (12)
H6AA—C6A—H6AB109.2C6B—C5B—C8B102.98 (10)
C6A—C7A—C2A104.38 (13)C4B—C5B—C8B102.65 (10)
C6A—C7A—H7AA110.9C6B—C5B—H5BA114.5
C2A—C7A—H7AA110.9C4B—C5B—H5BA114.5
C6A—C7A—H7AB110.9C8B—C5B—H5BA114.5
C2A—C7A—H7AB110.9C5B—C6B—C7B103.23 (10)
H7AA—C7A—H7AB108.9C5B—C6B—H6BA111.1
C10C—C8A—C9A91.9 (2)C7B—C6B—H6BA111.1
C10C—C8A—C5A115.18 (19)C5B—C6B—H6BB111.1
C9A—C8A—C5A121.34 (19)C7B—C6B—H6BB111.1
C10C—C8A—C2A118.6 (2)H6BA—C6B—H6BB109.1
C9A—C8A—C2A117.82 (16)C6B—C7B—C2B103.83 (10)
C5A—C8A—C2A94.20 (11)C6B—C7B—H7BA111.0
C10C—C8A—C9C111.1 (2)C2B—C7B—H7BA111.0
C9A—C8A—C9C19.89 (13)C6B—C7B—H7BB111.0
C5A—C8A—C9C106.14 (19)C2B—C7B—H7BB111.0
C2A—C8A—C9C110.03 (16)H7BA—C7B—H7BB109.0
C10C—C8A—C10A11.72 (18)C9B—C8B—C10B108.40 (11)
C9A—C8A—C10A103.2 (2)C9B—C8B—C5B113.06 (11)
C5A—C8A—C10A110.47 (13)C10B—C8B—C5B114.08 (10)
C2A—C8A—C10A109.62 (14)C9B—C8B—C2B114.39 (10)
C9C—C8A—C10A122.6 (2)C10B—C8B—C2B112.29 (10)
C8A—C9A—H9AA109.5C5B—C8B—C2B94.24 (9)
C8A—C9A—H9AB109.5C8B—C9B—H9BA109.5
H9AA—C9A—H9AB109.5C8B—C9B—H9BB109.5
C8A—C9A—H9AC109.5H9BA—C9B—H9BB109.5
H9AA—C9A—H9AC109.5C8B—C9B—H9BC109.5
H9AB—C9A—H9AC109.5H9BA—C9B—H9BC109.5
C8A—C9C—H9CA109.5H9BB—C9B—H9BC109.5
C8A—C9C—H9CB109.5C8B—C10B—H10G109.5
H9CA—C9C—H9CB109.5C8B—C10B—H10H109.5
C8A—C9C—H9CC109.5H10G—C10B—H10H109.5
H9CA—C9C—H9CC109.5C8B—C10B—H10I109.5
H9CB—C9C—H9CC109.5H10G—C10B—H10I109.5
C8A—C10A—H10A109.5H10H—C10B—H10I109.5
C8A—C10A—H10B109.5C11B—N1B—C12B109.21 (10)
H10A—C10A—H10B109.5C11B—N1B—H1BC125.4
C8A—C10A—H10C109.5C12B—N1B—H1BC125.4
H10A—C10A—H10C109.5C11B—N2B—C13B109.28 (11)
H10B—C10A—H10C109.5C11B—N2B—H2BA125.4
C8A—C10C—H10D109.5C13B—N2B—H2BA125.4
C8A—C10C—H10E109.5N2B—C11B—N1B107.93 (11)
H10D—C10C—H10E109.5N2B—C11B—H11B126.0
C8A—C10C—H10F109.5N1B—C11B—H11B126.0
H10D—C10C—H10F109.5C13B—C12B—N1B106.57 (11)
H10E—C10C—H10F109.5C13B—C12B—H12B126.7
C11A—N1A—C12A108.91 (11)N1B—C12B—H12B126.7
C11A—N1A—H1AC125.5C12B—C13B—N2B107.01 (11)
C12A—N1A—H1AC125.5C12B—C13B—H13B126.5
C11A—N2A—C13A109.07 (11)N2B—C13B—H13B126.5
C11A—N2A—H2AA125.5
O2A—S1A—C1A—C2A−105.42 (12)C12A—N1A—C11A—N2A0.11 (14)
O1A—S1A—C1A—C2A16.45 (14)C13A—N2A—C11A—N1A−0.31 (14)
O3A—S1A—C1A—C2A135.58 (11)C11A—N1A—C12A—C13A0.14 (15)
S1A—C1A—C2A—C3A62.08 (16)N1A—C12A—C13A—N2A−0.32 (15)
S1A—C1A—C2A—C7A−60.97 (16)C11A—N2A—C13A—C12A0.40 (15)
S1A—C1A—C2A—C8A179.34 (11)O3B—S1B—C1B—C2B−176.85 (9)
C1A—C2A—C3A—O4A−18.12 (19)O2B—S1B—C1B—C2B64.08 (11)
C7A—C2A—C3A—O4A111.36 (15)O1B—S1B—C1B—C2B−56.02 (11)
C8A—C2A—C3A—O4A−143.57 (14)S1B—C1B—C2B—C3B101.52 (11)
C1A—C2A—C3A—C4A160.54 (11)S1B—C1B—C2B—C7B−21.79 (16)
C7A—C2A—C3A—C4A−69.99 (12)S1B—C1B—C2B—C8B−143.94 (9)
C8A—C2A—C3A—C4A35.08 (13)C1B—C2B—C3B—O4B−20.75 (19)
O4A—C3A—C4A—C5A178.27 (13)C7B—C2B—C3B—O4B110.90 (15)
C2A—C3A—C4A—C5A−0.41 (13)C8B—C2B—C3B—O4B−144.36 (14)
C3A—C4A—C5A—C6A72.78 (14)C1B—C2B—C3B—C4B157.98 (11)
C3A—C4A—C5A—C8A−35.27 (14)C7B—C2B—C3B—C4B−70.38 (12)
C4A—C5A—C6A—C7A−68.92 (19)C8B—C2B—C3B—C4B34.36 (12)
C8A—C5A—C6A—C7A38.09 (18)O4B—C3B—C4B—C5B178.76 (14)
C5A—C6A—C7A—C2A−4.3 (2)C2B—C3B—C4B—C5B0.04 (14)
C1A—C2A—C7A—C6A−156.62 (14)C3B—C4B—C5B—C6B72.54 (13)
C3A—C2A—C7A—C6A72.72 (16)C3B—C4B—C5B—C8B−35.24 (13)
C8A—C2A—C7A—C6A−30.11 (17)C4B—C5B—C6B—C7B−71.47 (13)
C4A—C5A—C8A—C10C−68.8 (2)C8B—C5B—C6B—C7B36.08 (13)
C6A—C5A—C8A—C10C−179.6 (2)C5B—C6B—C7B—C2B−1.55 (14)
C4A—C5A—C8A—C9A−178.0 (2)C1B—C2B—C7B—C6B−161.59 (11)
C6A—C5A—C8A—C9A71.1 (2)C3B—C2B—C7B—C6B70.33 (12)
C4A—C5A—C8A—C2A55.64 (13)C8B—C2B—C7B—C6B−32.87 (13)
C6A—C5A—C8A—C2A−55.21 (14)C6B—C5B—C8B—C9B63.83 (13)
C4A—C5A—C8A—C9C167.90 (17)C4B—C5B—C8B—C9B174.13 (11)
C6A—C5A—C8A—C9C57.05 (19)C6B—C5B—C8B—C10B−171.69 (11)
C4A—C5A—C8A—C10A−57.12 (16)C4B—C5B—C8B—C10B−61.40 (13)
C6A—C5A—C8A—C10A−167.96 (15)C6B—C5B—C8B—C2B−54.96 (11)
C1A—C2A—C8A—C10C−60.1 (2)C4B—C5B—C8B—C2B55.33 (11)
C3A—C2A—C8A—C10C67.3 (2)C1B—C2B—C8B—C9B66.55 (14)
C7A—C2A—C8A—C10C172.9 (2)C3B—C2B—C8B—C9B−171.07 (11)
C1A—C2A—C8A—C9A49.3 (3)C7B—C2B—C8B—C9B−64.75 (13)
C3A—C2A—C8A—C9A176.6 (2)C1B—C2B—C8B—C10B−57.54 (14)
C7A—C2A—C8A—C9A−77.8 (3)C3B—C2B—C8B—C10B64.84 (12)
C1A—C2A—C8A—C5A178.22 (12)C7B—C2B—C8B—C10B171.16 (11)
C3A—C2A—C8A—C5A−54.43 (12)C1B—C2B—C8B—C5B−175.74 (10)
C7A—C2A—C8A—C5A51.17 (13)C3B—C2B—C8B—C5B−53.37 (10)
C1A—C2A—C8A—C9C69.4 (2)C7B—C2B—C8B—C5B52.95 (11)
C3A—C2A—C8A—C9C−163.3 (2)C13B—N2B—C11B—N1B0.55 (14)
C7A—C2A—C8A—C9C−57.7 (2)C12B—N1B—C11B—N2B−0.35 (14)
C1A—C2A—C8A—C10A−68.30 (16)C11B—N1B—C12B—C13B0.01 (14)
C3A—C2A—C8A—C10A59.06 (15)N1B—C12B—C13B—N2B0.32 (13)
C7A—C2A—C8A—C10A164.65 (14)C11B—N2B—C13B—C12B−0.54 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1AC···O2Bi0.862.462.9479 (14)116
N1A—H1AC···O3Aii0.862.002.8293 (14)161
N2A—H2AA···O1Biii0.861.892.7235 (14)164
N1B—H1BC···O1Ai0.861.882.7231 (14)165
N2B—H2BA···O2Biii0.861.972.7412 (14)148
N2B—H2BA···O3Aiv0.862.433.0111 (14)125
C7A—H7AB···O1A0.972.533.0257 (19)111
C11A—H11A···O2Bi0.932.492.9716 (16)113
C11A—H11A···O3Bi0.932.353.2648 (15)170
C11B—H11B···O2Aiv0.932.333.2103 (16)159
C9A—H9AC···O2Ai0.962.593.469 (3)152
C12B—H12B···O3Bi0.932.392.9950 (15)122
C12B—H12B···O4Ai0.932.493.0155 (16)116
C13A—H13A···O2Aiii0.932.443.0167 (16)120
C13A—H13A···O4Aiii0.932.393.2591 (17)155
C13B—H13B···O1Biii0.932.583.2720 (16)131
C7B—H7BA···O2B0.972.473.0613 (16)119
C5A—H5AA···Cg10.982.833.5459 (5)131

Symmetry codes: (i) x−1, y, z; (ii) x−1, y, z+1; (iii) −x+2, y−1/2, −z+1; (iv) −x+2, y−1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WW2136).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fukumoto, K., Yoshizawa, M. & Ohno, H. (2005). J. Am. Chem. Soc.127, 2398–2399. [PubMed]
  • Jeremić, D., Kaluderović, G. N., Brčeski, I., Gómez-Ruiz, S. & Andelković, K. K. (2008). Acta Cryst. E64, m952. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography