PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o250.
Published online 2009 January 8. doi:  10.1107/S1600536809000087
PMCID: PMC2968273

trans-5,6-Diphenyl­perhydro­pyran-2,4-dione

Abstract

In the title compound, C17H14O3, the pyran ring adopts a boat conformation and the dihedral angle between the aromatic ring planes is 59.1 (1)°. In the crystal structure inter­molecular C—H(...)O hydrogen bonds and C—H(...)π inter­actions link the mol­ecules.

Related literature

For general background, see: Yen & Chen (1995 [triangle]); Soler-Rivas et al. (2000 [triangle]). For related structures and biological activity, see: Brand-William et al. (1995 [triangle]); Sánchez-Moreno et al. (1998 [triangle]); Souza et al. (2004 [triangle]). For the synthesis, see: Souza (2008 [triangle]). For geometric analysis, see: Cremer & Pople (1975 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o250-scheme1.jpg

Experimental

Crystal data

  • C17H14O3
  • M r = 266.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o250-efi1.jpg
  • a = 8.9940 (2) Å
  • b = 8.2310 (4) Å
  • c = 18.9040 (8) Å
  • β = 101.412 (2)°
  • V = 1371.79 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 295 K
  • 0.30 × 0.30 × 0.18 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: none
  • 5298 measured reflections
  • 3113 independent reflections
  • 2459 reflections with I > 2σ(I)
  • R int = 0.017

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.131
  • S = 1.05
  • 3113 reflections
  • 181 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Nonius, 2000 [triangle]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); data reduction: DENZO (Otwinowski & Minor, 1997 [triangle]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000087/bq2110sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000087/bq2110Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has received partial support from CNPq, CAPES, FAPEAL, IM-INOFAR and FINEP.

supplementary crystallographic information

Comment

The free radicals generated in bioorganic redoxi processes induce oxidative damage in various components of the cells (e.g., lipids, proteins and nucleic acids) and their play a significant role in the development of life-limiting chronic diseases such as cancer, hypertension, arteriosclerosis, rheumatism, cataracts and other (Yen & Chen, 1995; Soler-Rivas et al.,2000). The dihydropyran-2,4-diones exhibit structural features present bin many biologically active natural products possessing important pharmacological activities (Brand-William et al.,1995; Sánchez-Moreno et al.,1998). As part of our continuing studies aimed at ascertaining the biological activity of this class, the title compound was synthetized (Souza, 2008) and its antioxidant activity analyzed in vitro, by measuring the decrease in absorbance at 515 nm that occurred when the 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) was reduced by the antioxidant. The spectrophotometric assay was used to determine the radical scavenging activity (Souza et al.,2004).

The ORTEP-3 (Farrugia, 1997) representation of the title compound (5,6-DPDP) is showing in (Fig. 1). Bond lengths and angles are in good agreement with the expected values reported in the literature (Allen et al., 1987). The pirane ring adopts a boat conformation and the calculated puckering parameters are: q2 = 0.624 (1) Å, q3 = 0.121 (1) Å, QT = 0.636 (1) Å, θ = 79.0 (1)° and [var phi] = 287.5 (1)° (Cremer & Pople, 1975). The dihedral angle between planes passing through atoms C7—C12 and C13—C18 of the aromatic rings is 59.1 (1) °. In the crystal packing, molecules interact through two intermolecular C–H···O hydrogen bonds and two C—H···.π interactions, Fig. 2 and Table 1.

Experimental

The trans-5, 6-diphenyltetradehydropyran-2,4-dione has showed similar antioxidant activity at the positive control, the synthetic antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) used as food conserving. The reduction percentage after 60 minutes to a solution of 20 nM of sample were 88% to 5,6-DPDP and 82% to BHT (Souza, 2008).The 5,6-DPDP was synthesized in one pot by preparation of the dianion of the ethyl 3-oxo-4-phenylbutanoate (NaH, n-butillithium, THF, -10° C), and alkylation reaction with benzaldehyde followed by ester hydrolysis (NaOH, H2O, 12 h, RT) and lactonization in acidic medium (HCl, H2O, 2 h, 0°C). The compound was purified by silica gel chromatography and the crystals for x-ray diffraction studies were grown by slow evaporation from a CHCl3 solution.

Refinement

H atoms were located on stereochemical grounds and refined with fixed geometry, each riding on a carrier atom, with C—H = [0.93 - 0.98] Å and anisotropic displacement parameter amounting to 1.5 (for Methyl-H atoms) and 1.2 (for the other H atoms) times the value of the equivalent isotropic displacement parameter of the which they are attached.The maximum and minimum residual electron density peaks were located 0.73 and 0.74 Å, from the C5 and H15 atoms respectively.

Figures

Fig. 1.
Projection of C17H14O3, showing the atom labelling with 50% probability displacement.
Fig. 2.
Hydrogen interactions.

Crystal data

C17H14O3F(000) = 560
Mr = 266.28Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 2880 reflections
a = 8.9940 (2) Åθ = 1.0–27.5°
b = 8.2310 (4) ŵ = 0.09 mm1
c = 18.9040 (8) ÅT = 295 K
β = 101.412 (2)°Prism, yellow
V = 1371.79 (9) Å30.30 × 0.30 × 0.18 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer2459 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.017
horizonally mounted graphite crystalθmax = 27.5°, θmin = 2.3°
Detector resolution: 9 pixels mm-1h = −11→11
CCD rotation images, thick slices scansk = −9→10
5298 measured reflectionsl = −24→24
3113 independent reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0508P)2 + 0.3831P] where P = (Fo2 + 2Fc2)/3
3113 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C20.69397 (19)−0.0595 (2)0.63794 (8)0.0521 (4)
C30.84834 (19)0.0134 (2)0.65634 (8)0.0560 (4)
H3A0.87170.06200.61310.067*
H3B0.9211−0.07300.67120.067*
C40.86937 (16)0.1403 (2)0.71484 (8)0.0476 (4)
C50.76480 (14)0.12492 (17)0.76852 (7)0.0383 (3)
H50.67710.19530.75150.046*
C60.70604 (15)−0.05049 (17)0.76642 (7)0.0385 (3)
H60.7925−0.12460.77900.046*
C70.83633 (14)0.17992 (16)0.84390 (7)0.0385 (3)
C80.76586 (17)0.2946 (2)0.87924 (9)0.0520 (4)
H80.67450.34020.85620.062*
C90.8303 (2)0.3421 (2)0.94867 (10)0.0652 (5)
H90.78170.41890.97220.078*
C100.9657 (2)0.2763 (2)0.98306 (9)0.0631 (5)
H101.00940.30971.02950.076*
C111.03660 (18)0.1616 (2)0.94891 (9)0.0565 (4)
H111.12810.11660.97230.068*
C120.97190 (16)0.11267 (19)0.87959 (8)0.0477 (4)
H121.01980.03400.85670.057*
C130.59831 (15)−0.07985 (17)0.81644 (7)0.0412 (3)
C140.46566 (19)0.0086 (2)0.80971 (12)0.0644 (5)
H140.44010.08340.77240.077*
C150.3711 (3)−0.0137 (3)0.85803 (16)0.0935 (8)
H150.28270.04730.85350.112*
C160.4061 (3)−0.1242 (4)0.91217 (15)0.1019 (10)
H160.3420−0.13780.94470.122*
C170.5352 (3)−0.2153 (4)0.91893 (11)0.0967 (9)
H170.5583−0.29150.95580.116*
C180.6323 (2)−0.1938 (2)0.87041 (9)0.0643 (5)
H180.7197−0.25640.87460.077*
O10.62369 (12)−0.08786 (13)0.69346 (5)0.0487 (3)
O20.96257 (15)0.24604 (19)0.71798 (7)0.0767 (4)
O30.63076 (17)−0.0935 (2)0.57795 (6)0.0792 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C20.0651 (10)0.0484 (9)0.0431 (8)0.0015 (7)0.0113 (7)−0.0051 (7)
C30.0617 (9)0.0655 (10)0.0462 (8)−0.0027 (8)0.0239 (7)−0.0015 (7)
C40.0423 (7)0.0550 (9)0.0467 (8)−0.0069 (7)0.0113 (6)0.0061 (7)
C50.0347 (6)0.0387 (7)0.0422 (7)−0.0028 (5)0.0091 (5)0.0005 (6)
C60.0368 (6)0.0390 (7)0.0393 (7)−0.0005 (5)0.0065 (5)−0.0010 (5)
C70.0355 (6)0.0375 (7)0.0436 (7)−0.0054 (5)0.0105 (5)−0.0013 (6)
C80.0456 (8)0.0520 (9)0.0578 (9)0.0054 (7)0.0089 (7)−0.0089 (7)
C90.0683 (11)0.0677 (11)0.0606 (10)0.0065 (9)0.0158 (8)−0.0212 (9)
C100.0674 (11)0.0741 (12)0.0456 (9)−0.0053 (9)0.0054 (7)−0.0149 (8)
C110.0462 (8)0.0640 (10)0.0558 (9)0.0005 (7)0.0015 (7)−0.0007 (8)
C120.0400 (7)0.0506 (8)0.0524 (8)0.0012 (6)0.0091 (6)−0.0066 (7)
C130.0426 (7)0.0381 (7)0.0435 (7)−0.0100 (5)0.0100 (6)−0.0046 (6)
C140.0544 (9)0.0477 (9)0.0998 (14)−0.0010 (7)0.0365 (9)0.0020 (9)
C150.0823 (14)0.0728 (14)0.147 (2)−0.0182 (11)0.0759 (15)−0.0221 (15)
C160.113 (2)0.118 (2)0.0933 (17)−0.0592 (18)0.0672 (16)−0.0339 (16)
C170.1149 (19)0.122 (2)0.0517 (11)−0.0542 (18)0.0137 (12)0.0191 (12)
C180.0620 (10)0.0742 (12)0.0529 (9)−0.0146 (9)0.0023 (8)0.0170 (9)
O10.0522 (6)0.0502 (6)0.0433 (6)−0.0104 (5)0.0084 (4)−0.0078 (5)
O20.0722 (8)0.0922 (10)0.0712 (8)−0.0402 (7)0.0275 (6)−0.0053 (7)
O30.0974 (10)0.0914 (10)0.0454 (7)−0.0122 (8)0.0061 (6)−0.0174 (7)

Geometric parameters (Å, °)

C2—O31.1971 (19)C9—C101.374 (3)
C2—O11.3484 (19)C9—H90.9300
C2—C31.489 (2)C10—C111.370 (2)
C3—C41.506 (2)C10—H100.9300
C3—H3A0.9700C11—C121.384 (2)
C3—H3B0.9700C11—H110.9300
C4—O21.2013 (19)C12—H120.9300
C4—C51.5191 (19)C13—C181.375 (2)
C5—C71.5122 (18)C13—C141.382 (2)
C5—C61.5353 (19)C14—C151.378 (3)
C5—H50.9800C14—H140.9300
C6—O11.4633 (16)C15—C161.358 (4)
C6—C131.5013 (18)C15—H150.9300
C6—H60.9800C16—C171.367 (4)
C7—C81.381 (2)C16—H160.9300
C7—C121.387 (2)C17—C181.398 (3)
C8—C91.382 (2)C17—H170.9300
C8—H80.9300C18—H180.9300
O3—C2—O1119.27 (16)C10—C9—H9119.9
O3—C2—C3124.18 (16)C8—C9—H9119.9
O1—C2—C3116.55 (13)C11—C10—C9120.03 (16)
C2—C3—C4115.28 (13)C11—C10—H10120.0
C2—C3—H3A108.5C9—C10—H10120.0
C4—C3—H3A108.5C10—C11—C12119.91 (15)
C2—C3—H3B108.5C10—C11—H11120.0
C4—C3—H3B108.5C12—C11—H11120.0
H3A—C3—H3B107.5C11—C12—C7120.60 (14)
O2—C4—C3121.58 (14)C11—C12—H12119.7
O2—C4—C5123.07 (15)C7—C12—H12119.7
C3—C4—C5115.35 (12)C18—C13—C14119.27 (15)
C7—C5—C4113.59 (11)C18—C13—C6120.03 (14)
C7—C5—C6112.70 (11)C14—C13—C6120.69 (14)
C4—C5—C6108.47 (11)C15—C14—C13120.3 (2)
C7—C5—H5107.2C15—C14—H14119.9
C4—C5—H5107.2C13—C14—H14119.9
C6—C5—H5107.2C16—C15—C14120.5 (2)
O1—C6—C13106.88 (10)C16—C15—H15119.8
O1—C6—C5109.24 (11)C14—C15—H15119.8
C13—C6—C5113.39 (11)C15—C16—C17120.2 (2)
O1—C6—H6109.1C15—C16—H16119.9
C13—C6—H6109.1C17—C16—H16119.9
C5—C6—H6109.1C16—C17—C18119.9 (2)
C8—C7—C12118.76 (13)C16—C17—H17120.0
C8—C7—C5120.68 (13)C18—C17—H17120.0
C12—C7—C5120.54 (13)C13—C18—C17119.8 (2)
C7—C8—C9120.43 (15)C13—C18—H18120.1
C7—C8—H8119.8C17—C18—H18120.1
C9—C8—H8119.8C2—O1—C6118.00 (11)
C10—C9—C8120.25 (16)
O3—C2—C3—C4141.51 (18)C9—C10—C11—C120.3 (3)
O1—C2—C3—C4−38.6 (2)C10—C11—C12—C70.6 (3)
C2—C3—C4—O2−153.41 (17)C8—C7—C12—C11−1.0 (2)
C2—C3—C4—C526.3 (2)C5—C7—C12—C11−179.25 (14)
O2—C4—C5—C7−33.0 (2)O1—C6—C13—C18119.45 (14)
C3—C4—C5—C7147.27 (13)C5—C6—C13—C18−120.13 (15)
O2—C4—C5—C6−159.12 (16)O1—C6—C13—C14−61.63 (17)
C3—C4—C5—C621.12 (17)C5—C6—C13—C1458.80 (18)
C7—C5—C6—O1173.61 (10)C18—C13—C14—C152.1 (3)
C4—C5—C6—O1−59.72 (13)C6—C13—C14—C15−176.85 (17)
C7—C5—C6—C1354.54 (15)C13—C14—C15—C16−0.9 (3)
C4—C5—C6—C13−178.80 (11)C14—C15—C16—C17−0.5 (4)
C4—C5—C7—C8126.23 (15)C15—C16—C17—C180.6 (4)
C6—C5—C7—C8−109.89 (15)C14—C13—C18—C17−1.9 (3)
C4—C5—C7—C12−55.59 (18)C6—C13—C18—C17176.99 (16)
C6—C5—C7—C1268.29 (16)C16—C17—C18—C130.6 (3)
C12—C7—C8—C90.5 (2)O3—C2—O1—C6177.79 (15)
C5—C7—C8—C9178.72 (15)C3—C2—O1—C6−2.1 (2)
C7—C8—C9—C100.4 (3)C13—C6—O1—C2175.37 (12)
C8—C9—C10—C11−0.9 (3)C5—C6—O1—C252.33 (16)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6···O2i0.982.443.380 (2)161
C17—H17···O3ii0.932.463.351 (3)160
C3—H3B···Cg1i0.972.983.681 (2)131
C5—H5···Cg2iii0.982.963.830 (2)149

Symmetry codes: (i) −x+2, y−1/2, −z+3/2; (ii) x, −y−1/2, z+1/2; (iii) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2110).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Brand-William, W., Cuvelier, M. E. & Berset, C. (1995). Food Sci. Technol.28, 25–30.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326, New York: Academic Press.
  • Sánchez-Moreno, C., Larrauri, J. A. & Saura-Calixto, F. J. (1998). Sci. Food. Agric.76, 270–276.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Soler-Rivas, C., Espin, J. C. & Withhers, H. J. (2000). Phytochem. Anal.11, 330–338.
  • Souza, L. C. (2008). PhD thesis, Instituto de Química e Biotecnologia, University of Alagoas, Brazil.
  • Souza, L. C., Araújo, S. M. S. & Imbroisi, D. O. (2004). Bioorg. Med. Chem. Lett.14, 5859–5861. [PubMed]
  • Yen, G. C. & Chen, H. Y. J. (1995). Agric. Food Chem.43, 27–32.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography