PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m202.
Published online 2009 January 17. doi:  10.1107/S1600536809001457
PMCID: PMC2968272

(4,4′-Di-tert-butyl-2,2′-bipyridine-κ2 N,N′)bis­(nitrato-κ2 O,O′)copper(II)

Abstract

In the crystal of the title compound, [Cu(NO3)2(C18H24N2)], the CuII ion is coordinated by two N atoms of the bipyridine ligand and four O atoms from the two nitrate anions in a distorted octahedral fashion. The dihedral angle between the planes of the two pyridine rings is 11.52 (10)°. In the crystal structure, weak C—H(...)O inter­actions may help to establish the packing.

Related literature

For general background, see: Noro et al. (2000 [triangle]); Yaghi et al. (1998 [triangle]); Huertas et al. (2001 [triangle]); Qin et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m202-scheme1.jpg

Experimental

Crystal data

  • [Cu(NO3)2(C18H24N2)]
  • M r = 455.96
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m202-efi1.jpg
  • a = 9.8265 (16) Å
  • b = 13.247 (2) Å
  • c = 16.138 (3) Å
  • V = 2100.7 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.08 mm−1
  • T = 173 (2) K
  • 0.27 × 0.25 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.759, T max = 0.837
  • 11065 measured reflections
  • 3642 independent reflections
  • 3450 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.074
  • S = 1.05
  • 3642 reflections
  • 258 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.64 e Å−3
  • Δρmin = −0.81 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1522 Friedel pairs
  • Flack parameter: 0.012 (13)

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001457/at2708sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001457/at2708Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors gratefully acknowledge the Natural Science Foundation of China (No. 20767001), the International Collaborative Project of Guizhou Province, the Governor Foundation of Guizhou Province and the Natural Science Youth Foundation of Guizhou University (No. 2007–005) for financial support.

supplementary crystallographic information

Comment

Research into transition metal complexes has been rapidly expanding because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro et al., 2000; Yaghi et al., 1998). And 4,4'-di-tert-butyl-2,2'-bipyridine has been used as a ligand in coordination chemistry (Huertas et al., 2001; Qin et al., 2002). We report here the crystal structure of the title copper(II)complex, (I), containing a bipyridine ligand.

In the crystal of (I), the CuII ion is coordinated by two N atoms of the 4,4'-di-tert-butyl-2,2'-bipyridine ligand and four O atoms from the two nitrate anions. The dihedral angle between the planes of two pyridine rings is 11.52 (10)°. The title compound forms intermolecular H bond whereas the protonated C1 atom act as hydrogen-bond donor and O4 atom act as hydrogen-bond acceptor, the distance of the C1—H1···O4 hydrogen bonds is 3.124 (3) Å (Table 1). Weak C—H···O interactions may help to establish the packing.

Experimental

A solution of 4,4'-di-tert-butyl-2,2'-bipyridine (0.15 g, 0.56 mmol) in ethanol (50 ml) was added to a solution of Cu(N03)2, (0.09 g, 0.56 mmol) in H2O (20 ml), and the resulting blue solution was stirred for 10 min at 313 K. Then, it was left to evaporate slowly at room temperature. After one week, blue crystals of (I) were isolated.

Refinement

H atoms were placed in calculated positions and refined as riding, with C—H = 0.93- and 0.96 Å, and Uiso(H) = 1.2–1.5Ueq(C).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

[Cu(NO3)2(C18H24N2)]F(000) = 948
Mr = 455.96Dx = 1.442 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2120 reflections
a = 9.8265 (16) Åθ = 2.0–25.0°
b = 13.247 (2) ŵ = 1.08 mm1
c = 16.138 (3) ÅT = 173 K
V = 2100.7 (6) Å3Block, blue
Z = 40.27 × 0.25 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer3642 independent reflections
Radiation source: fine-focus sealed tube3450 reflections with I > 2σ(I)
graphiteRint = 0.022
[var phi] and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −11→11
Tmin = 0.759, Tmax = 0.837k = −15→15
11065 measured reflectionsl = −19→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074w = 1/[σ2(Fo2) + (0.0386P)2 + 0.8717P] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3642 reflectionsΔρmax = 0.64 e Å3
258 parametersΔρmin = −0.81 e Å3
1 restraintAbsolute structure: Flack (1983), 1522 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.012 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.58577 (3)0.98172 (2)0.72968 (2)0.02515 (10)
O20.3672 (2)1.0193 (2)0.66313 (14)0.0434 (6)
O10.4195 (2)0.89792 (15)0.74670 (14)0.0387 (5)
O40.5221 (2)1.08313 (16)0.81065 (13)0.0328 (5)
N20.7365 (2)1.06673 (17)0.68765 (15)0.0243 (5)
N40.5626 (2)1.05068 (18)0.88143 (15)0.0300 (6)
O50.6358 (2)0.97414 (17)0.88213 (13)0.035
N10.6896 (2)0.87411 (17)0.67467 (15)0.0242 (5)
N30.3281 (3)0.9442 (2)0.70369 (17)0.0381 (6)
O60.5273 (3)1.0950 (2)0.94430 (15)0.0558 (7)
C151.0722 (3)1.2220 (2)0.56813 (19)0.0308 (7)
C60.8337 (3)1.0146 (2)0.64671 (16)0.0225 (6)
C110.9809 (3)0.6535 (2)0.58589 (19)0.0279 (6)
O30.2114 (2)0.9132 (2)0.7046 (2)0.0649 (9)
C20.7514 (3)0.7040 (2)0.64459 (18)0.0275 (6)
H20.72650.63630.64360.033*
C30.8801 (3)0.7323 (2)0.61767 (18)0.0233 (6)
C80.9527 (3)1.1675 (2)0.61021 (18)0.0253 (6)
C70.9411 (3)1.0624 (2)0.60741 (17)0.0252 (6)
H71.00571.02450.57910.030*
C50.8133 (3)0.9040 (2)0.64572 (17)0.0225 (6)
C40.9100 (3)0.83539 (19)0.61865 (16)0.0223 (5)
H40.99480.85800.60110.027*
C10.6602 (3)0.7753 (2)0.67289 (19)0.0281 (6)
H10.57520.75410.69140.034*
C100.7481 (3)1.1682 (2)0.69174 (19)0.0290 (6)
H100.68211.20470.72020.035*
C171.1679 (4)1.2577 (3)0.6369 (2)0.0507 (10)
H17A1.24451.29190.61280.076*
H17B1.19931.20060.66810.076*
H17C1.12021.30320.67300.076*
C90.8536 (3)1.2190 (2)0.65550 (19)0.0302 (7)
H90.85941.28880.66110.036*
C141.1222 (3)0.6979 (3)0.5698 (2)0.0400 (8)
H14A1.18170.64590.54980.060*
H14B1.15800.72510.62050.060*
H14C1.11550.75070.52920.060*
C130.9948 (3)0.5689 (2)0.6509 (2)0.0397 (8)
H13A1.05770.51890.63120.060*
H13B0.90760.53810.66000.060*
H13C1.02760.59690.70200.060*
C161.1495 (3)1.1522 (3)0.5092 (2)0.0410 (8)
H16A1.22351.18850.48440.062*
H16B1.08901.12870.46670.062*
H16C1.18451.09550.53960.062*
C120.9251 (4)0.6105 (3)0.5041 (2)0.0440 (8)
H12A0.98710.56070.48290.066*
H12B0.91540.66410.46450.066*
H12C0.83800.57980.51390.066*
C181.0207 (4)1.3135 (3)0.5182 (3)0.0512 (10)
H18A1.09651.34670.49230.077*
H18B0.97551.35980.55470.077*
H18C0.95811.29100.47640.077*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02290 (16)0.02379 (17)0.02875 (18)0.00229 (14)0.00540 (15)−0.00019 (15)
O20.0210.0581 (15)0.0509 (13)0.0047 (11)−0.0042 (9)0.0038 (14)
O10.0287 (10)0.0327 (11)0.0548 (15)−0.0013 (9)0.0091 (10)0.0042 (9)
O40.0379 (11)0.0321 (12)0.0285 (11)0.0100 (9)0.0039 (10)0.0011 (10)
N20.0264 (12)0.0209 (12)0.0256 (12)0.0016 (10)0.0028 (10)0.0006 (10)
N40.0287 (13)0.0328 (14)0.0283 (13)0.0002 (11)0.0005 (11)−0.0032 (11)
O50.0330.0340.0380.0127 (10)−0.0048 (9)0.0036 (10)
N10.0248 (11)0.0220 (13)0.0260 (13)−0.0020 (10)0.0038 (10)0.0000 (10)
N30.0263 (13)0.0424 (16)0.0455 (17)0.0029 (11)0.0057 (10)−0.0132 (13)
O60.0737 (18)0.0623 (17)0.0313 (14)0.0154 (14)0.0022 (13)−0.0100 (12)
C150.0309 (16)0.0254 (15)0.0361 (17)−0.0065 (14)−0.0001 (15)0.0046 (12)
C60.0253 (13)0.0220 (14)0.0201 (13)0.0005 (12)0.0013 (11)0.0000 (12)
C110.0330 (15)0.0207 (15)0.0299 (16)0.0024 (13)0.0008 (13)−0.0045 (12)
O30.0275 (13)0.0736 (19)0.094 (2)−0.0068 (12)−0.0036 (13)−0.0171 (17)
C20.0291 (14)0.0201 (14)0.0332 (17)−0.0039 (12)0.0012 (13)−0.0010 (12)
C30.0286 (16)0.0214 (14)0.0200 (14)0.0008 (11)−0.0055 (12)0.0007 (11)
C80.0287 (15)0.0230 (15)0.0242 (16)−0.0037 (11)−0.0047 (12)0.0036 (12)
C70.0239 (15)0.0255 (14)0.0262 (15)−0.0011 (11)0.0027 (12)−0.0024 (12)
C50.0246 (13)0.0227 (15)0.0202 (14)−0.0013 (11)0.0003 (12)−0.0016 (12)
C40.0206 (12)0.0243 (14)0.0218 (13)−0.0023 (12)0.0018 (13)−0.0016 (11)
C10.0258 (15)0.0240 (15)0.0344 (17)−0.0039 (12)0.0010 (13)−0.0002 (13)
C100.0345 (15)0.0232 (15)0.0295 (16)0.0059 (13)0.0041 (13)−0.0012 (12)
C170.045 (2)0.056 (2)0.051 (2)−0.0223 (18)−0.0037 (18)−0.0033 (19)
C90.0381 (16)0.0187 (15)0.0339 (17)−0.0004 (12)−0.0017 (14)−0.0016 (13)
C140.0333 (18)0.0337 (18)0.053 (2)0.0072 (14)0.0107 (15)−0.0022 (16)
C130.0459 (19)0.0285 (17)0.045 (2)0.0100 (15)−0.0019 (16)0.0064 (15)
C160.0365 (17)0.0393 (19)0.047 (2)−0.0091 (15)0.0115 (16)0.0047 (16)
C120.051 (2)0.043 (2)0.0384 (18)0.0096 (18)−0.0011 (17)−0.0151 (14)
C180.047 (2)0.040 (2)0.067 (3)−0.0033 (17)0.0112 (19)0.0231 (19)

Geometric parameters (Å, °)

Cu1—N11.965 (2)C8—C91.396 (4)
Cu1—O41.976 (2)C8—C71.398 (4)
Cu1—N21.980 (2)C7—H70.9300
Cu1—O11.994 (2)C5—C41.385 (4)
O2—N31.251 (4)C4—H40.9300
O1—N31.290 (3)C1—H10.9300
O4—N41.284 (3)C10—C91.368 (4)
N2—C61.351 (3)C10—H100.9300
N2—C101.350 (4)C17—H17A0.9600
N4—O61.223 (3)C17—H17B0.9600
N4—O51.243 (3)C17—H17C0.9600
N1—C11.340 (4)C9—H90.9300
N1—C51.360 (4)C14—H14A0.9600
N3—O31.218 (3)C14—H14B0.9600
C15—C161.528 (4)C14—H14C0.9600
C15—C171.531 (5)C13—H13A0.9600
C15—C81.536 (4)C13—H13B0.9600
C15—C181.541 (4)C13—H13C0.9600
C6—C71.385 (4)C16—H16A0.9600
C6—C51.479 (4)C16—H16B0.9600
C11—C31.528 (4)C16—H16C0.9600
C11—C141.530 (4)C12—H12A0.9600
C11—C121.539 (4)C12—H12B0.9600
C11—C131.541 (4)C12—H12C0.9600
C2—C11.380 (4)C18—H18A0.9600
C2—C31.389 (4)C18—H18B0.9600
C2—H20.9300C18—H18C0.9600
C3—C41.396 (4)
N1—Cu1—O4163.03 (9)C4—C5—C6124.1 (2)
N1—Cu1—N282.49 (9)C5—C4—C3120.0 (3)
O4—Cu1—N294.41 (9)C5—C4—H4120.0
N1—Cu1—O194.82 (9)C3—C4—H4120.0
O4—Cu1—O191.59 (9)N1—C1—C2122.4 (3)
N2—Cu1—O1167.53 (10)N1—C1—H1118.8
N3—O1—Cu1103.37 (17)C2—C1—H1118.8
N4—O4—Cu1105.23 (16)N2—C10—C9122.2 (3)
C6—N2—C10118.2 (2)N2—C10—H10118.9
C6—N2—Cu1113.90 (18)C9—C10—H10118.9
C10—N2—Cu1127.8 (2)C15—C17—H17A109.5
O6—N4—O5123.3 (3)C15—C17—H17B109.5
O6—N4—O4119.3 (2)H17A—C17—H17B109.5
O5—N4—O4117.4 (2)C15—C17—H17C109.5
C1—N1—C5118.0 (2)H17A—C17—H17C109.5
C1—N1—Cu1127.3 (2)H17B—C17—H17C109.5
C5—N1—Cu1114.09 (18)C10—C9—C8120.8 (3)
O3—N3—O2124.3 (3)C10—C9—H9119.6
O3—N3—O1119.2 (3)C8—C9—H9119.6
O2—N3—O1116.5 (2)C11—C14—H14A109.5
C16—C15—C17109.4 (3)C11—C14—H14B109.5
C16—C15—C8111.8 (2)H14A—C14—H14B109.5
C17—C15—C8107.1 (3)C11—C14—H14C109.5
C16—C15—C18108.3 (3)H14A—C14—H14C109.5
C17—C15—C18109.7 (3)H14B—C14—H14C109.5
C8—C15—C18110.5 (3)C11—C13—H13A109.5
N2—C6—C7121.9 (3)C11—C13—H13B109.5
N2—C6—C5114.6 (2)H13A—C13—H13B109.5
C7—C6—C5123.5 (3)C11—C13—H13C109.5
C3—C11—C14112.4 (2)H13A—C13—H13C109.5
C3—C11—C12108.1 (3)H13B—C13—H13C109.5
C14—C11—C12108.7 (3)C15—C16—H16A109.5
C3—C11—C13109.0 (2)C15—C16—H16B109.5
C14—C11—C13108.4 (3)H16A—C16—H16B109.5
C12—C11—C13110.3 (3)C15—C16—H16C109.5
C1—C2—C3120.6 (3)H16A—C16—H16C109.5
C1—C2—H2119.7H16B—C16—H16C109.5
C3—C2—H2119.7C11—C12—H12A109.5
C2—C3—C4116.9 (3)C11—C12—H12B109.5
C2—C3—C11120.7 (2)H12A—C12—H12B109.5
C4—C3—C11122.4 (3)C11—C12—H12C109.5
C9—C8—C7116.5 (3)H12A—C12—H12C109.5
C9—C8—C15122.4 (3)H12B—C12—H12C109.5
C7—C8—C15121.0 (3)C15—C18—H18A109.5
C6—C7—C8120.2 (3)C15—C18—H18B109.5
C6—C7—H7119.9H18A—C18—H18B109.5
C8—C7—H7119.9C15—C18—H18C109.5
N1—C5—C4122.0 (3)H18A—C18—H18C109.5
N1—C5—C6113.9 (2)H18B—C18—H18C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O4i0.932.463.124 (3)129

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2708).

References

  • Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Huertas, S., Hissler, M., McGarrah, J. E., Lachicotte, R. J. & Eisenberg, R. (2001). Inorg. Chem.40, 1183–1188. [PubMed]
  • Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed.39, 2081–2084. [PubMed]
  • Qin, Z. Q., Jennings, M. C. & Puddephatt, R. J. (2002). Inorg. Chem.41, 3967–3974. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res.31, 474–484.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography