PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m205.
Published online 2009 January 17. doi:  10.1107/S1600536809001664
PMCID: PMC2968270

(11,13-Dimethyl-1,4,7,10-tetra­azacyclo­trideca-10,13-dienato)copper(II) per­chlorate

Abstract

The title complex, [Cu(C11H21N4)]ClO4, comprises [CuII(L)]+ (L = 11,13-dimethyl-1,4,7,10-tetra­azacyclo­trideca-10,12-dien­ate) cations and a perchlorate anion. The Cu atom is located on a twofold crystallographic symmetry axis and is coordinated by four N atoms in a slightly distorted square-planar geometry. Inter­molecular N—H(...)O hydrogen bonds are present.

Related literature

For macrocyclic ligands containing four N atoms in a square-planar coordination geometry, see: Andrews et al. (1999 [triangle]); Kim et al. (2004 [triangle]); Richardson & Sievers (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m205-scheme1.jpg

Experimental

Crystal data

  • [Cu(C11H21N4)]ClO4
  • M r = 372.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m205-efi1.jpg
  • a = 12.530 (5) Å
  • b = 14.469 (6) Å
  • c = 8.501 (4) Å
  • V = 1541.2 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.61 mm−1
  • T = 293 (2) K
  • 0.15 × 0.13 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.794, T max = 0.843
  • 6834 measured reflections
  • 1349 independent reflections
  • 950 reflections with I > 2σ(I)
  • R int = 0.064

Refinement

  • R[F 2 > 2σ(F 2)] = 0.067
  • wR(F 2) = 0.216
  • S = 1.05
  • 1349 reflections
  • 98 parameters
  • H-atom parameters constrained
  • Δρmax = 1.10 e Å−3
  • Δρmin = −0.59 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP (Sheldrick, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001664/hg2468sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001664/hg2468Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Macrocyclic ligands containing four N atoms located in a square planar coordination geometry have been intensly studied during the past several decades (Richardson, et al., 1972; Andrews, et al., 1999; Kim, et al., 2004). Here,we report a macrocycle tetraaza copper(II) complex based on the condensation of triethylenetetraamine (trien) with acetylacetone in the presence of copper(II) perchlorate.

The geometry and labelling scheme for the crystal structure of the title complex are depicted in Figure 1. The coordination sphere for the CuII ion in the title complex, which coordinates to four N atoms from triethylenetetraamine, is square planar with a mean deviation from the plane formed by the Cu atom and four N atoms of 0.0929Å . The bond lengths of Cu1—N1 and Cu1—N2 are 1.809 (4) and 1.876 (4)Å , respectively, which are slightly shorter than the corresponding distances found in another macrocycle copper complex 13,14-benzo-2,4,9,11-tetramethyl- 1,5,8,12-tetraazacyclotetradeca-1,3,9,11-tetraenato(2-)copper(II) (Kim, et al., 2004).

Experimental

The title complex has been synthesized by the template method used commonly for synthesize metal complexes of macrocycle ligand. After the mixture, which is formed by acetylacetone, trien and Cu(ClO4)2.6H2O with a molar ratio 1:1:1 in methanol/water(v:v, 1:1), has been stirred for 6 h at 323 K, it was filtered and the filtrate was allowed to partial evaporate in air for one week to produce crystals suitable for X-ray diffraction with a yield of about 45%.

Refinement

All the H atoms were constrained with C—H distances of 0.93, 0.96, 0.97 Å and N—H distances of 0.91 Å, respectively, and were allowed for as riding atoms with Uiso(H) = 1.2Ueq (C or N) and 1.5Ueq(C).

Figures

Fig. 1.
A view of the cation of the title complex with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

[Cu(C11H21N4)]ClO4F(000) = 772
Mr = 372.31Dx = 1.605 Mg m3Dm = 1.605 Mg m3Dm measured by not measured
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 1838 reflections
a = 12.530 (5) Åθ = 3.2–24.7°
b = 14.469 (6) ŵ = 1.61 mm1
c = 8.501 (4) ÅT = 293 K
V = 1541.2 (11) Å3Block, blue
Z = 40.15 × 0.13 × 0.11 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1349 independent reflections
Radiation source: fine-focus sealed tube950 reflections with I > 2σ(I)
graphiteRint = 0.064
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −14→12
Tmin = 0.794, Tmax = 0.843k = −15→17
6834 measured reflectionsl = −9→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.216H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.144P)2 + 0.9336P] where P = (Fo2 + 2Fc2)/3
1349 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = −0.59 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.00000.32069 (5)0.25000.0431 (4)
Cl10.00000.14239 (18)0.75000.0660 (7)
O10.0525 (6)0.2000 (6)0.6429 (9)0.139 (3)
O20.0806 (8)0.0904 (4)0.8238 (11)0.160 (3)
N10.0904 (3)0.4014 (3)0.1568 (5)0.0481 (11)
N20.0740 (3)0.2278 (3)0.1414 (5)0.0476 (11)
H20.04270.22190.04530.057*
C10.00000.5334 (6)0.25000.060 (2)
H10.00000.59760.25000.072*
C20.0803 (4)0.4932 (3)0.1651 (7)0.0579 (15)
C30.1590 (5)0.5506 (4)0.0804 (9)0.078 (2)
H3A0.22980.53340.11220.117*
H3B0.14710.61460.10470.117*
H3C0.15130.5412−0.03080.117*
C40.1727 (4)0.3589 (4)0.0637 (7)0.0576 (14)
H4A0.23960.39160.07800.069*
H4B0.15370.3613−0.04690.069*
C50.1840 (4)0.2618 (4)0.1151 (8)0.0597 (14)
H5A0.22530.25810.21140.072*
H5B0.21930.22540.03470.072*
C60.0587 (5)0.1407 (4)0.2241 (7)0.0574 (15)
H6A0.10560.13690.31470.069*
H6B0.07320.08880.15520.069*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0446 (7)0.0320 (6)0.0526 (7)0.000−0.0004 (3)0.000
Cl10.0883 (17)0.0572 (14)0.0526 (13)0.0000.0019 (10)0.000
O10.113 (5)0.182 (6)0.122 (6)−0.012 (5)−0.020 (4)0.056 (5)
O20.244 (10)0.106 (4)0.130 (6)0.077 (6)−0.015 (7)0.003 (5)
N10.045 (2)0.039 (2)0.060 (3)−0.0019 (17)−0.004 (2)0.0077 (19)
N20.055 (3)0.038 (2)0.049 (2)0.0060 (18)0.0024 (19)0.0023 (17)
C10.069 (5)0.022 (3)0.090 (7)0.000−0.026 (5)0.000
C20.058 (3)0.041 (3)0.075 (4)−0.011 (3)−0.031 (3)0.012 (3)
C30.078 (4)0.051 (3)0.104 (5)−0.027 (3)−0.026 (4)0.020 (3)
C40.048 (3)0.057 (3)0.068 (4)−0.002 (2)0.006 (3)0.011 (3)
C50.053 (3)0.059 (3)0.068 (4)0.010 (2)0.002 (3)0.008 (3)
C60.070 (4)0.034 (3)0.068 (4)0.007 (3)0.002 (3)0.004 (2)

Geometric parameters (Å, °)

Cu1—N1i1.809 (4)C1—C2i1.367 (7)
Cu1—N11.809 (4)C1—H10.9300
Cu1—N2i1.876 (4)C2—C31.477 (8)
Cu1—N21.876 (4)C3—H3A0.9600
Cl1—O1ii1.399 (8)C3—H3B0.9600
Cl1—O11.399 (8)C3—H3C0.9600
Cl1—O21.407 (8)C4—C51.479 (8)
Cl1—O2ii1.407 (8)C4—H4A0.9700
N1—C21.337 (6)C4—H4B0.9700
N1—C41.438 (7)C5—H5A0.9700
N2—C61.455 (7)C5—H5B0.9700
N2—C51.481 (7)C6—C6i1.535 (13)
N2—H20.9100C6—H6A0.9700
C1—C21.367 (7)C6—H6B0.9700
N1i—Cu1—N199.6 (3)C1—C2—C3120.7 (5)
N1i—Cu1—N2i86.43 (19)C2—C3—H3A109.5
N1—Cu1—N2i170.85 (17)C2—C3—H3B109.5
N1i—Cu1—N2170.85 (17)H3A—C3—H3B109.5
N1—Cu1—N286.43 (19)C2—C3—H3C109.5
N2i—Cu1—N288.4 (2)H3A—C3—H3C109.5
O1ii—Cl1—O1106.9 (7)H3B—C3—H3C109.5
O1ii—Cl1—O2111.4 (5)N1—C4—C5108.2 (4)
O1—Cl1—O2105.8 (5)N1—C4—H4A110.1
O1ii—Cl1—O2ii105.8 (5)C5—C4—H4A110.1
O1—Cl1—O2ii111.4 (5)N1—C4—H4B110.1
O2—Cl1—O2ii115.3 (7)C5—C4—H4B110.1
C2—N1—C4121.5 (4)H4A—C4—H4B108.4
C2—N1—Cu1124.0 (4)C4—C5—N2105.8 (4)
C4—N1—Cu1114.5 (3)C4—C5—H5A110.6
C6—N2—C5118.9 (4)N2—C5—H5A110.6
C6—N2—Cu1108.5 (3)C4—C5—H5B110.6
C5—N2—Cu1107.2 (3)N2—C5—H5B110.6
C6—N2—H2107.2H5A—C5—H5B108.7
C5—N2—H2107.2N2—C6—C6i105.3 (4)
Cu1—N2—H2107.2N2—C6—H6A110.7
C2—C1—C2i129.7 (7)C6i—C6—H6A110.7
C2—C1—H1115.1N2—C6—H6B110.7
C2i—C1—H1115.1C6i—C6—H6B110.7
N1—C2—C1121.3 (6)H6A—C6—H6B108.8
N1—C2—C3118.0 (6)

Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1iii0.912.813.668 (5)157
N2—H2···O1i0.912.022.917 (8)168

Symmetry codes: (iii) x, y, z−1; (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2468).

References

  • Andrews, P. C., Atwood, J. L., Barbour, L. J., Croucher, P. D., Nichols, P. J., Smith, N. O., Skelton, B. W., White, A. H. & Raston, C. L. (1999). J. Chem. Soc. Dalton Trans. pp. 2927–2932.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Kim, D. I., Kim, E. H., Bae, Z. U., Na, H. G., Choi, J. H. & Park, Y. C. (2004). J. Inclus. Phenom. Macrocycl. Chem.49, 107–113.
  • Richardson, M. F. & Sievers, R. E. (1972). J. Am. Chem. Soc.94, 4134–4139.
  • Sheldrick, G. M. (1998). XP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2003). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography