PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m137.
Published online 2009 January 8. doi:  10.1107/S1600536808043614
PMCID: PMC2968262

catena-Poly[[aqua­trimethyl­tin(IV)]-{[trimethyl­tin(IV)]-μ3-thio­phene-2,5-dicarboxyl­ato}]

Abstract

In the title compound, [Sn2(CH3)6(C6H2O4S)(H2O)]n, each of the two crystallographically independent Sn atoms exhibits a distorted trigonal–bipyramidal coordination geometry formed by two O and three C atoms. The coordinated water mol­ecule plays an important role in crystal packing consolidation via O—H(...)O hydrogen bonding.

Related literature

For related structures, see: Prabusankar & Murugavel (2004 [triangle]); Bhandari et al. (1998 [triangle]); Ma et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m137-scheme1.jpg

Experimental

Crystal data

  • [Sn2(CH3)6(C6H2O4S)(H2O)]
  • M r = 515.74
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m137-efi1.jpg
  • a = 7.2761 (16) Å
  • b = 10.467 (2) Å
  • c = 12.894 (3) Å
  • β = 102.768 (2)°
  • V = 957.7 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.73 mm−1
  • T = 298 (2) K
  • 0.40 × 0.30 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.408, T max = 0.585 (expected range = 0.383–0.549)
  • 4866 measured reflections
  • 3204 independent reflections
  • 2950 reflections with I > 2σ(I)
  • R int = 0.024

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.067
  • S = 1.03
  • 3204 reflections
  • 193 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.40 e Å−3
  • Δρmin = −0.41 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1631 Friedel pairs
  • Flack parameter: −0.06 (3)

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043614/cv2496sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043614/cv2496Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of Huai Nan Union University (No. X051040).

supplementary crystallographic information

Comment

Organotin complexes are attracting more and more attention because of their considerable structural diversity and interesting topologies (Prabusankar et al., 2004). From the coordinated viewpoint, those dicarboxylate ligands with additional donor atoms, has been revealed to help the construction of interesting topologies (Bhandari et al., 1998). Herein, we report the structure of the title complex, (I).

The title compound (Fig.1) forms an extended one-dimensional chain structure along the b axis arising from Sn—O bridges to ligands. The Sn1 atom has distorted trigonal-bipyramidal geometry, with atoms O1 and O2 in axial positions [O1—Sn1—O2(1 - x, y + 1/2, 1 - z) = 172.06 (17) °] and the C atoms of the three methyl groups in equatorial positions. Associated with the sum of the angles subtended at the Sn1 in the equatorial plane is 357.9 (4) °, indicating approximate coplanarity for these atoms; and the Sn1—O1 distance 2.135 (5) Å and Sn1—O2i distance 2.641 (5) Å (Table 1), are close to the reported values for organotin compounds (Ma et al., 2006). The environment of the Sn2 atom is approximate to Sn1.

Experimental

The reaction was carried out under nitrogen atmosphere. Thiophenn-2,5-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Trimethyltin chloride (2 mmol) was then added to the reactor and the reaction mixture was stirred for 12 h at room temperature. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks of compound (yield 82%. m.p.463k). Anal. Calcd (%) for C12H22O5SSn2 (Mr = 515.74): C, 27.94; H, 4.30; Found (%): C, 27.65; H, 4.57.

Refinement

C-bound H atoms were geometrically positioned [C–H 0.93–0.96 Å] and treated as riding, with Uiso(H) = 1.2–1.5Ueq(C). Atoms H1 and H2 were located on a difference Fourier map and refined with bond restraints O–H=0.85 (7) Å and constrained Uiso(H) = 1.1Ueq(O).

Figures

Fig. 1.
A portion of the polymeric chain of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
Fig. 2.
One-dimensional polymeric chain in the title compound.

Crystal data

[Sn2(CH3)6(C6H2O4S)(H2O)]F(000) = 500
Mr = 515.74Dx = 1.788 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 7.2761 (16) ÅCell parameters from 3167 reflections
b = 10.467 (2) Åθ = 2.5–27.3°
c = 12.894 (3) ŵ = 2.73 mm1
β = 102.768 (2)°T = 298 K
V = 957.7 (4) Å3Block, colourless
Z = 20.40 × 0.30 × 0.22 mm

Data collection

Bruker SMART CCD area-detector diffractometer3204 independent reflections
Radiation source: fine-focus sealed tube2950 reflections with I > 2σ(I)
graphiteRint = 0.024
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −7→8
Tmin = 0.408, Tmax = 0.585k = −12→12
4866 measured reflectionsl = −14→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4614P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3204 reflectionsΔρmax = 0.40 e Å3
193 parametersΔρmin = −0.41 e Å3
1 restraintAbsolute structure: Flack (1983), 1631 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.06 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.40954 (6)0.66275 (4)0.52089 (3)0.05596 (13)
Sn20.29616 (5)−0.21300 (4)0.94966 (3)0.04704 (11)
O10.2935 (8)0.5249 (5)0.6105 (4)0.0697 (13)
O20.4490 (8)0.3555 (5)0.5684 (4)0.0712 (13)
O30.2928 (6)−0.0330 (4)0.8646 (3)0.0549 (11)
O40.0302 (6)0.0281 (5)0.9120 (3)0.0620 (12)
O50.3171 (8)−0.4236 (5)1.0422 (5)0.0697 (14)
S10.3024 (2)0.17295 (16)0.71215 (11)0.0493 (3)
C10.3378 (10)0.4063 (7)0.6153 (5)0.0571 (16)
C20.2486 (8)0.3306 (5)0.6871 (4)0.0463 (14)
C30.1297 (10)0.3741 (7)0.7489 (6)0.0668 (19)
H30.08500.45750.74680.080*
C40.0833 (9)0.2787 (8)0.8154 (5)0.0638 (16)
H40.00380.29190.86180.077*
C50.1680 (8)0.1643 (7)0.8045 (4)0.0463 (12)
C60.1558 (8)0.0462 (6)0.8644 (4)0.0476 (14)
C70.2903 (11)0.5827 (9)0.3703 (5)0.079 (2)
H7A0.36240.50940.35860.118*
H7B0.29180.64510.31590.118*
H7C0.16270.55740.36810.118*
C80.2492 (14)0.8103 (8)0.5708 (8)0.097 (3)
H8A0.17670.77570.61810.145*
H8B0.16570.84700.50990.145*
H8C0.33240.87520.60720.145*
C90.6959 (10)0.6383 (9)0.5970 (6)0.080 (2)
H9A0.70460.58710.65970.119*
H9B0.75230.72020.61660.119*
H9C0.76100.59640.54950.119*
C100.0317 (9)−0.2808 (8)0.8666 (6)0.0686 (19)
H10A−0.0630−0.21770.86890.103*
H10B0.0016−0.35820.89910.103*
H10C0.0361−0.29740.79400.103*
C110.5359 (11)−0.2714 (8)0.8945 (7)0.084 (3)
H11A0.4987−0.33130.83740.125*
H11B0.6248−0.31100.95160.125*
H11C0.5931−0.19820.86960.125*
C120.3463 (10)−0.1258 (7)1.1007 (5)0.0656 (19)
H12A0.2520−0.06191.10150.098*
H12B0.4686−0.08671.11560.098*
H12C0.3411−0.18921.15380.098*
H10.405 (12)−0.434 (8)1.097 (6)0.079*
H20.233 (11)−0.442 (8)1.076 (6)0.079*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.0634 (3)0.0477 (2)0.0566 (2)0.0046 (2)0.0130 (2)0.0066 (2)
Sn20.03417 (18)0.0448 (2)0.0646 (2)0.00064 (19)0.01612 (16)0.0085 (2)
O10.092 (4)0.042 (3)0.081 (3)0.010 (3)0.033 (3)0.019 (2)
O20.099 (4)0.052 (3)0.073 (3)0.003 (3)0.041 (3)0.002 (2)
O30.051 (2)0.050 (2)0.070 (3)0.013 (2)0.026 (2)0.018 (2)
O40.051 (3)0.066 (3)0.075 (3)0.009 (2)0.028 (2)0.014 (2)
O50.057 (3)0.059 (3)0.099 (4)−0.003 (2)0.029 (3)0.023 (3)
S10.0592 (9)0.0388 (8)0.0543 (7)0.0041 (7)0.0223 (7)0.0034 (7)
C10.065 (4)0.054 (4)0.050 (3)0.002 (3)0.008 (3)0.007 (3)
C20.049 (3)0.041 (3)0.047 (3)0.005 (2)0.007 (3)0.006 (2)
C30.069 (5)0.047 (4)0.087 (5)0.019 (3)0.022 (4)0.016 (3)
C40.066 (4)0.055 (4)0.078 (4)0.016 (4)0.034 (3)0.008 (4)
C50.042 (3)0.049 (3)0.049 (3)0.007 (3)0.011 (2)0.002 (3)
C60.040 (3)0.051 (4)0.053 (3)0.004 (3)0.015 (3)0.003 (3)
C70.067 (5)0.098 (7)0.064 (4)−0.020 (4)0.000 (4)0.004 (4)
C80.125 (8)0.051 (5)0.135 (8)0.011 (5)0.073 (7)0.012 (5)
C90.070 (5)0.086 (6)0.073 (4)−0.002 (4)−0.003 (4)−0.002 (4)
C100.047 (4)0.075 (5)0.080 (4)−0.008 (3)0.004 (3)−0.004 (4)
C110.071 (5)0.064 (5)0.133 (7)0.024 (4)0.059 (5)0.025 (5)
C120.060 (4)0.059 (4)0.071 (4)−0.005 (3)−0.001 (3)0.011 (3)

Geometric parameters (Å, °)

Sn1—C92.114 (7)C4—C51.368 (10)
Sn1—C72.117 (7)C4—H40.9300
Sn1—C82.120 (8)C5—C61.470 (9)
Sn1—O12.135 (5)C7—H7A0.9600
Sn1—O2i2.641 (5)C7—H7B0.9600
Sn2—C102.108 (7)C7—H7C0.9600
Sn2—C122.108 (7)C8—H8A0.9600
Sn2—C112.114 (7)C8—H8B0.9600
Sn2—O32.178 (4)C8—H8C0.9600
Sn2—O52.495 (5)C9—H9A0.9600
O1—C11.282 (9)C9—H9B0.9600
O2—C11.233 (8)C9—H9C0.9600
O3—C61.296 (7)C10—H10A0.9600
O4—C61.223 (6)C10—H10B0.9600
O5—H10.85 (8)C10—H10C0.9600
O5—H20.85 (7)C11—H11A0.9600
S1—C51.702 (5)C11—H11B0.9600
S1—C21.711 (6)C11—H11C0.9600
C1—C21.474 (9)C12—H12A0.9600
C2—C31.376 (8)C12—H12B0.9600
C3—C41.405 (10)C12—H12C0.9600
C3—H30.9300
C9—Sn1—C7122.7 (3)C6—C5—S1121.5 (5)
C9—Sn1—C8120.0 (4)O4—C6—O3124.0 (6)
C7—Sn1—C8115.2 (4)O4—C6—C5122.2 (6)
C9—Sn1—O197.7 (3)O3—C6—C5113.8 (5)
C7—Sn1—O195.6 (3)Sn1—C7—H7A109.5
C8—Sn1—O191.0 (2)Sn1—C7—H7B109.5
C9—Sn1—O2i81.7 (3)H7A—C7—H7B109.5
C7—Sn1—O2i91.3 (2)Sn1—C7—H7C109.5
C8—Sn1—O2i82.5 (3)H7A—C7—H7C109.5
O1—Sn1—O2i172.06 (17)H7B—C7—H7C109.5
C10—Sn2—C12124.6 (3)Sn1—C8—H8A109.5
C10—Sn2—C11117.4 (4)Sn1—C8—H8B109.5
C12—Sn2—C11116.7 (3)H8A—C8—H8B109.5
C10—Sn2—O397.4 (3)Sn1—C8—H8C109.5
C12—Sn2—O394.1 (2)H8A—C8—H8C109.5
C11—Sn2—O389.9 (2)H8B—C8—H8C109.5
C10—Sn2—O584.1 (3)Sn1—C9—H9A109.5
C12—Sn2—O587.8 (2)Sn1—C9—H9B109.5
C11—Sn2—O586.4 (2)H9A—C9—H9B109.5
O3—Sn2—O5176.36 (17)Sn1—C9—H9C109.5
C1—O1—Sn1123.8 (4)H9A—C9—H9C109.5
C6—O3—Sn2118.5 (4)H9B—C9—H9C109.5
Sn2—O5—H1118 (6)Sn2—C10—H10A109.5
Sn2—O5—H2118 (6)Sn2—C10—H10B109.5
H1—O5—H292 (7)H10A—C10—H10B109.5
C5—S1—C292.3 (3)Sn2—C10—H10C109.5
O2—C1—O1125.4 (6)H10A—C10—H10C109.5
O2—C1—C2120.3 (6)H10B—C10—H10C109.5
O1—C1—C2114.2 (6)Sn2—C11—H11A109.5
C3—C2—C1127.4 (6)Sn2—C11—H11B109.5
C3—C2—S1110.9 (4)H11A—C11—H11B109.5
C1—C2—S1121.5 (5)Sn2—C11—H11C109.5
C2—C3—C4112.6 (6)H11A—C11—H11C109.5
C2—C3—H3123.7H11B—C11—H11C109.5
C4—C3—H3123.7Sn2—C12—H12A109.5
C5—C4—C3112.7 (6)Sn2—C12—H12B109.5
C5—C4—H4123.7H12A—C12—H12B109.5
C3—C4—H4123.7Sn2—C12—H12C109.5
C4—C5—C6126.9 (5)H12A—C12—H12C109.5
C4—C5—S1111.5 (5)H12B—C12—H12C109.5

Symmetry codes: (i) −x+1, y+1/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···O3ii0.85 (8)2.38 (8)3.050 (7)136 (7)
O5—H2···O4iii0.85 (7)1.98 (8)2.765 (6)153 (7)

Symmetry codes: (ii) −x+1, y−1/2, −z+2; (iii) −x, y−1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2496).

References

  • Bhandari, S., Mahon, M., McGinley, J., Molloy, K. & Roper, C. (1998). J. Chem. Soc. Dalton Trans. pp. 3425–3430.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ma, C., Li, J., Zhang, R. & Wang, D. (2006). J. Organomet. Chem.691, 1713–1721.
  • Prabusankar, G. & Murugavel, R. (2004). Organometallics, 23, 5644–5647.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography