PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o237.
Published online 2009 January 8. doi:  10.1107/S1600536808043778
PMCID: PMC2968255

(E)-1-[4-(Dimethyl­amino)benzyl­idene]thio­semicarbazide

Abstract

In the title mol­ecule, C10H14N4S, the thio­rea plane and benzene ring form a dihedral angle of 16.0 (3) Å. In the crystal structure, inter­molecular N—H(...)S hydrogen bonds link the mol­ecules into ribbons extended in the [100] direction; these incorporate inversion dimers.

Related literature

For the biomedical properties of thio­semicarbazones, see: Beraldo & Gambino (2004 [triangle]); Bondock et al. (2007 [triangle]). For the crystal structure of the related compound benzyl N′-(2-chloro­benzyl­idene)hydrazinecarbodithio­ate, see Shi et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o237-scheme1.jpg

Experimental

Crystal data

  • C10H14N4S
  • M r = 222.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o237-efi1.jpg
  • a = 5.6984 (13) Å
  • b = 8.9493 (14) Å
  • c = 22.813 (2) Å
  • β = 93.860 (2)°
  • V = 1160.7 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.25 mm−1
  • T = 298 (2) K
  • 0.50 × 0.48 × 0.26 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.884, T max = 0.937
  • 5769 measured reflections
  • 2047 independent reflections
  • 1435 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.110
  • S = 1.02
  • 2047 reflections
  • 137 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043778/cv2492sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043778/cv2492Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the financial support of the University Student Science and Technology Culture Foundation of Liaocheng University (grant No. SRT07012HX2).

supplementary crystallographic information

Comment

The title compound (I) is a derivative of thiosemicarbazones, which are important for drug design (Beraldo & Gambino, 2004) and for synthesis of heterocyclic rings (Bondock et al., 2007).

In (I) (Fig.1), all bond lengths and angles are normal and comparable to those observed in the related compound (Shi et al., 2008). The dihedral angle between the C9/C10/N4 plane and the benzene ring is 10.14 (3) °. The thiorea plane and benzene ring form a dihedral angle of 15.97 (3) °. The C1=S1 bond length of 1.674 (2) Å is intermediate between the values of 1.82 Å for a C—S single bond and 1.56 Å for a C=S double bond. The C=N—N angle in the molecule of 115.69 (19)° is significantly smaller than the ideal value of 120° expected for sp2 -hybridized N atoms. This is probably a consequence of repulsion between the nitrogen lone pairs and the adjacent N bonds.

In the crystal, the intermolecular N—H···S hydrogen bonds (Table 1) link the molecules into ribbons extended in direction [100].

Experimental

N,N' –Dimethylaminobenzaldehyde (0.5 mmol), thiosemicarbazide (0.5 mmol) and 10 ml e thanol were mixed in 50 ml flask. After stirring 30 min at 373 K, the resulting mixture was recrystalized from ethanol, affording the title compound as a orange crystalline solid. Elemental analysis: calculated for C10H14N4S: C 54.03, H 6.35, N 25.20%; found: C 54.38, H 6.54, N 25.27%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H= 0.93–0.96 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C,N).

Figures

Fig. 1.
The molecular structure of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C10H14N4SF(000) = 472
Mr = 222.31Dx = 1.272 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 5.6984 (13) ÅCell parameters from 2093 reflections
b = 8.9493 (14) Åθ = 2.5–25.9°
c = 22.813 (2) ŵ = 0.25 mm1
β = 93.860 (2)°T = 298 K
V = 1160.7 (3) Å3Block, orange
Z = 40.50 × 0.48 × 0.26 mm

Data collection

Bruker SMART CCD area-detector diffractometer2047 independent reflections
Radiation source: fine-focus sealed tube1435 reflections with I > 2σ(I)
graphiteRint = 0.037
[var phi] and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→6
Tmin = 0.884, Tmax = 0.937k = −10→10
5769 measured reflectionsl = −27→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.110w = 1/[σ2(Fo2) + (0.0432P)2 + 0.4004P] where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2047 reflectionsΔρmax = 0.17 e Å3
137 parametersΔρmin = −0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.9364 (3)0.1808 (2)0.14592 (8)0.0544 (5)
H11.04420.23900.16110.065*
N20.7454 (3)0.1467 (2)0.17756 (8)0.0497 (5)
N30.7772 (3)0.0474 (2)0.06910 (8)0.0583 (6)
H3A0.65480.03490.08870.070*
H3B0.78200.00930.03460.070*
N40.0633 (3)0.1090 (2)0.39241 (9)0.0621 (6)
S11.20240 (11)0.15551 (9)0.05735 (3)0.0708 (3)
C10.9570 (4)0.1249 (2)0.09195 (9)0.0473 (5)
C20.7371 (4)0.2136 (3)0.22678 (9)0.0510 (6)
H20.85390.28290.23740.061*
C30.5554 (4)0.1872 (2)0.26677 (9)0.0470 (5)
C40.5549 (4)0.2699 (3)0.31838 (10)0.0560 (6)
H40.66760.34410.32530.067*
C50.3937 (4)0.2457 (3)0.35945 (10)0.0573 (6)
H50.39850.30440.39320.069*
C60.2228 (4)0.1346 (2)0.35143 (9)0.0483 (5)
C70.2210 (4)0.0514 (3)0.29886 (9)0.0528 (6)
H70.1082−0.02260.29160.063*
C80.3831 (4)0.0782 (3)0.25809 (9)0.0507 (6)
H80.37710.02170.22380.061*
C9−0.1011 (4)−0.0139 (3)0.38610 (12)0.0684 (7)
H9A−0.1877−0.00740.34860.103*
H9B−0.2082−0.00920.41680.103*
H9C−0.0166−0.10670.38870.103*
C100.0832 (6)0.1853 (3)0.44832 (12)0.0900 (10)
H10A0.21930.14950.47110.135*
H10B−0.05490.16640.46900.135*
H10C0.09840.29080.44190.135*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0517 (11)0.0650 (13)0.0474 (11)−0.0059 (9)0.0093 (9)−0.0067 (10)
N20.0506 (10)0.0566 (12)0.0425 (10)0.0063 (9)0.0089 (8)0.0035 (9)
N30.0458 (10)0.0862 (15)0.0438 (11)−0.0059 (10)0.0098 (8)−0.0078 (10)
N40.0661 (12)0.0674 (14)0.0547 (12)−0.0014 (10)0.0186 (10)−0.0096 (10)
S10.0521 (4)0.0967 (6)0.0658 (5)−0.0157 (3)0.0204 (3)−0.0145 (4)
C10.0442 (12)0.0545 (14)0.0433 (12)0.0065 (10)0.0034 (9)0.0047 (10)
C20.0608 (13)0.0469 (13)0.0454 (13)0.0028 (11)0.0048 (11)0.0003 (10)
C30.0582 (13)0.0433 (13)0.0396 (12)0.0080 (10)0.0041 (10)0.0000 (10)
C40.0701 (15)0.0447 (13)0.0541 (14)−0.0055 (11)0.0105 (12)−0.0073 (11)
C50.0776 (16)0.0499 (14)0.0455 (13)0.0010 (12)0.0125 (12)−0.0134 (11)
C60.0521 (12)0.0480 (13)0.0450 (13)0.0087 (10)0.0042 (10)−0.0018 (10)
C70.0521 (12)0.0561 (15)0.0499 (13)−0.0030 (11)0.0018 (10)−0.0084 (11)
C80.0583 (13)0.0545 (14)0.0389 (12)0.0055 (11)−0.0010 (10)−0.0095 (10)
C90.0647 (15)0.0705 (17)0.0714 (17)−0.0004 (13)0.0154 (13)0.0057 (14)
C100.118 (2)0.088 (2)0.0690 (19)−0.0113 (18)0.0441 (17)−0.0195 (16)

Geometric parameters (Å, °)

N1—C11.342 (3)C4—C51.372 (3)
N1—N21.380 (2)C4—H40.9300
N1—H10.8600C5—C61.396 (3)
N2—C21.276 (3)C5—H50.9300
N3—C11.315 (3)C6—C71.411 (3)
N3—H3A0.8600C7—C81.375 (3)
N3—H3B0.8600C7—H70.9300
N4—C61.366 (3)C8—H80.9300
N4—C101.445 (3)C9—H9A0.9600
N4—C91.446 (3)C9—H9B0.9600
S1—C11.674 (2)C9—H9C0.9600
C2—C31.445 (3)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C81.389 (3)C10—H10C0.9600
C3—C41.391 (3)
C1—N1—N2121.22 (18)C4—C5—H5119.5
C1—N1—H1119.4C6—C5—H5119.5
N2—N1—H1119.4N4—C6—C5121.3 (2)
C2—N2—N1115.69 (19)N4—C6—C7121.8 (2)
C1—N3—H3A120.0C5—C6—C7116.9 (2)
C1—N3—H3B120.0C8—C7—C6121.1 (2)
H3A—N3—H3B120.0C8—C7—H7119.5
C6—N4—C10120.6 (2)C6—C7—H7119.5
C6—N4—C9121.0 (2)C7—C8—C3121.8 (2)
C10—N4—C9117.4 (2)C7—C8—H8119.1
N3—C1—N1116.51 (19)C3—C8—H8119.1
N3—C1—S1123.55 (17)N4—C9—H9A109.5
N1—C1—S1119.94 (17)N4—C9—H9B109.5
N2—C2—C3123.3 (2)H9A—C9—H9B109.5
N2—C2—H2118.3N4—C9—H9C109.5
C3—C2—H2118.3H9A—C9—H9C109.5
C8—C3—C4116.9 (2)H9B—C9—H9C109.5
C8—C3—C2123.7 (2)N4—C10—H10A109.5
C4—C3—C2119.3 (2)N4—C10—H10B109.5
C5—C4—C3122.3 (2)H10A—C10—H10B109.5
C5—C4—H4118.9N4—C10—H10C109.5
C3—C4—H4118.9H10A—C10—H10C109.5
C4—C5—C6121.1 (2)H10B—C10—H10C109.5
C1—N1—N2—C2−175.76 (19)C9—N4—C6—C5−175.0 (2)
N2—N1—C1—N35.8 (3)C10—N4—C6—C7173.9 (2)
N2—N1—C1—S1−174.31 (15)C9—N4—C6—C75.8 (3)
N1—N2—C2—C3−177.43 (18)C4—C5—C6—N4179.4 (2)
N2—C2—C3—C85.5 (3)C4—C5—C6—C7−1.4 (3)
N2—C2—C3—C4−177.3 (2)N4—C6—C7—C8−179.8 (2)
C8—C3—C4—C50.4 (3)C5—C6—C7—C80.9 (3)
C2—C3—C4—C5−177.0 (2)C6—C7—C8—C30.2 (3)
C3—C4—C5—C60.7 (4)C4—C3—C8—C7−0.8 (3)
C10—N4—C6—C5−6.9 (4)C2—C3—C8—C7176.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3A···S1i0.862.843.408 (2)125
N3—H3B···S1ii0.862.573.417 (2)168

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2492).

References

  • Beraldo, H. & Gambino, D. (2004). Mini - Rev. Med. Chem.4, 31–39. [PubMed]
  • Bondock, S., Khalifa, W. & Fadda, A. A. (2007). Eur. J. Med. Chem.42, 948–954. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, Z.-Q., Ji, N.-N. & Ji, Q.-Q. (2008). Acta Cryst. E64, o2249. [PMC free article] [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography