PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m190.
Published online 2009 January 14. doi:  10.1107/S1600536808042839
PMCID: PMC2968252

{2-[1-(2-Amino-2-methyl­propyl­imino)eth­yl]phenolato-κ3 N,N′,O}dioxidovanadium(V)

Abstract

In the crystal structure of the title compound, [V(C12H17N2O)O2], the vanadium(V) centre is five-coordinate in a distorted square-pyramidal environment. The three atoms of the deprotonated Schiff base and a double-bonded O atom comprise the basal plane. N—H(...)O hydrogen bonds lead to a zigzag chain structure parallel to [001].

Related literature

For general background, see: Carter-Franklin et al. (2003 [triangle]); Eady (2003 [triangle]); Evangelou (2002 [triangle]); Mendz (1991 [triangle]); Mokry & Carrano (1993 [triangle]); Parekh et al. (2006 [triangle]); Rehder et al. (2002 [triangle], 2003 [triangle]); Shahzadi et al. (2007 [triangle]). For related structures, see: Kwiatkowski et al. (2003 [triangle], 2007 [triangle]); Rao et al. (1981 [triangle]). For synthesis, see: Kwiatkowski et al. (2003 [triangle]). For the calculation of square-pyramidal geometries, see: Holmes (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m190-scheme1.jpg

Experimental

Crystal data

  • [V(C12H17N2O)O2]
  • M r = 288.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m190-efi1.jpg
  • a = 11.1198 (6) Å
  • b = 15.7408 (8) Å
  • c = 7.6448 (3) Å
  • V = 1338.10 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.74 mm−1
  • T = 295 (2) K
  • 0.20 × 0.04 × 0.04 mm

Data collection

  • Oxford Diffraction Ruby CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.941, T max = 0.964
  • 11574 measured reflections
  • 2126 independent reflections
  • 1387 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.051
  • S = 0.83
  • 2126 reflections
  • 167 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.16 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 849 Friedel pairs
  • Flack parameter: 0.23 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042839/ng2526sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042839/ng2526Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This scientific work has been supported by Funds for Science in Years 2007–2009 as a research project (N N204 0355 33 and DS/8210–4–0086–9).

supplementary crystallographic information

Comment

Vanadium(IV) and (V) complexes with Schiff bases are excellent model compounds for some biological enzymes, viz.: haloperoxidases (Carter-Franklin et al., 2003; Rehder et al., 2003), phosphomutases (Mendz, 1991) and nitrogenases (Eady, 2003). Their various pharmocological properties also has been reported, especially as an antidiabetes (Rehder et al., 2002), anticancer (Evangelou, 2002), antifungal and antibacterial (Parekh et al., 2006; Shahzadi et al., 2007) agents.

The crystal structure of (I) consists of monomeric complex molecules (Fig. 1) with a distorted square pyramidal geometry about vanadium with O15 at the apex. By the use of the dihedral angle method and the unit bond lengths, it was estimated that the structure is displaced by 76.1% along the Berry coordinate from the ideal trigonal bipyramidal (0%) toward the ideal square pyramidal (100%) geometry (Holmes, 1984). In contrast to this structure, the similar monomeric complex, but derived from 4,6-dimetoxysalicylaldehyde (Kwiatkowski et al., 2003), reveals a distorted trigonal bipyramidal environment with the degree of the distortion of 41.2% along the Berry coordinate. The vanadium atom is displaced from the mean plane passing through the four basal atoms, N8, N11, O13 and O14, by ca 0.51 (1) Å towards O15. The bond lengths V12—N8 of 2.171 (3) Å, V12—N11 of 2.118 (2) Å, V12—O13 of 1.883 (2) Å, V12—O14 of 1.635 (2) Å, V12—O15 of 1.615 (2) Å and the O=V=O angle of 109.9° are similar to the values in other cis-VO2+ complexes (Mokry & Carrano, 1993; Kwiatkowski et al., 2003; Kwiatkowski et al., 2007). The six-membered chelate ring (V12, O13, C1, C2, C7, N8) is concluded to be an envelope on V12 atom. The ring puckering analysis shows that the five-membered chelate ring defined by V12, N11, C10, C9, N8 atoms adopts a twisted conformation on C10 and N11 atoms, with P = 282.7 (2)° and Tau(M) = 49.9 (2)° for reference bond V12—N8 (Rao et al., 1981).

The crystal structure of the monomeric complex (I) is stabilized by the C—H···O, N—H···O hydrogen bonds and C—H···π interactions. Hydrogen bonds between dioxidovanadium oxygen atoms and nitrogen and carbon atoms of neighbouring molecules result in formation of infinite chains and closed loops, extending in the a direction (Tables 1 and 2, Fig. 2).

Experimental

The complex (I) were obtained in a template/complexation reactions analogous to those described for preparation of dioxidovanadium(V) complexes with Schiff base ligands (Kwiatkowski et al., 2003). A solution of 1 mmol of 2-methyl-1,2-diaminopropane in 10 ml of absolute ethanol was added under stirring to a freshly filtered solution of vanadium(V) oxytriethoxide (1 mmol) in 50 ml of absolute EtOH producing a yellow suspension of the intermediate. 2-Acetylphenol (1 mmol) dissolved in absolute EtOH was added to the aforementioned suspension. After refluxing (70 ml) of the resulting mixture for 2 h and its cooling to room temperature the separated solids were filtered off, washed several times with EtOH and dried over molecular sieves.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C–H distances of 0.93–0.97Å and with Uiso(H) = 1.2Ueq(C) (C–H = 0.96Å and Uiso(H) = 1.5Ueq(C) for the methyl group) and with N–H distances of 0.90Å and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title complex (I), with displacement ellipsoids drawn at the 25% probability level and H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
The arrangement of the molecules of (I) in the crystal structure viewed approximately along a axis. The C—H···O and N—H···O hydrogen bonds are represented by dashed lines and the C—H···π ...

Crystal data

[V(C12H17N2O)O2]F(000) = 600
Mr = 288.22Dx = 1.431 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2126 reflections
a = 11.1198 (6) Åθ = 3.2–25.1°
b = 15.7408 (8) ŵ = 0.74 mm1
c = 7.6448 (3) ÅT = 295 K
V = 1338.10 (11) Å3Needle, white
Z = 40.2 × 0.04 × 0.04 mm

Data collection

Oxford Diffraction Ruby CCD diffractometer2126 independent reflections
Radiation source: Enhance (Mo) X-ray Source1387 reflections with I > 2σ(I)
graphiteRint = 0.071
Detector resolution: 10.4002 pixels mm-1θmax = 25.1°, θmin = 3.2°
ω scansh = −12→13
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −18→18
Tmin = 0.941, Tmax = 0.964l = −9→7
11574 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.051w = 1/[σ2(Fo2) + (0.0211P)2] where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
2126 reflectionsΔρmax = 0.19 e Å3
167 parametersΔρmin = −0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 849 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.23 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR andgoodness of fit S are based on F2, conventional R-factors R are basedon F, with F set to zero for negative F2. The threshold expression ofF2 > σ(F2) is used only for calculating R-factors(gt) etc. and isnot relevant to the choice of reflections for refinement. R-factors basedon F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.3317 (3)0.3973 (2)0.5333 (4)0.0380 (8)
C20.2695 (3)0.37563 (19)0.6865 (4)0.0354 (8)
C30.3314 (3)0.37812 (17)0.8474 (6)0.0512 (8)
H3A0.29030.36510.94990.061*
C40.4498 (3)0.3992 (2)0.8561 (6)0.0560 (10)
H4A0.48870.40120.96370.067*
C50.5121 (3)0.4175 (2)0.7045 (6)0.0602 (11)
H5A0.59310.43190.71010.072*
C60.4544 (3)0.4145 (2)0.5448 (5)0.0510 (10)
H6A0.49820.42400.44310.061*
C70.1437 (3)0.34815 (19)0.6801 (4)0.0399 (8)
N80.0753 (2)0.36544 (15)0.5463 (3)0.0378 (7)
C9−0.0510 (3)0.3371 (2)0.5463 (4)0.0422 (9)
H9A−0.09560.36770.63530.051*
H9B−0.05490.27700.57330.051*
C10−0.1063 (3)0.3534 (2)0.3683 (4)0.0407 (9)
N11−0.06106 (19)0.44045 (15)0.3205 (5)0.0408 (6)
H11A−0.09460.47900.39250.049*
H11B−0.08440.45280.21070.049*
V120.12859 (4)0.45059 (3)0.33674 (6)0.03758 (15)
O130.27910 (18)0.39910 (13)0.3758 (3)0.0456 (6)
O140.1359 (2)0.45725 (14)0.1236 (2)0.0467 (6)
O150.1372 (2)0.54432 (13)0.4218 (2)0.0483 (6)
C260.0950 (3)0.29854 (18)0.8337 (6)0.0592 (9)
H26A0.01620.27760.80600.089*
H26B0.09050.33490.93430.089*
H26C0.14740.25160.85840.089*
C27−0.0620 (3)0.2904 (2)0.2305 (5)0.0536 (9)
H27A0.02430.28860.23200.080*
H27B−0.08900.30810.11700.080*
H27C−0.09330.23490.25590.080*
C28−0.2434 (3)0.3536 (2)0.3770 (5)0.0699 (12)
H28A−0.26970.39600.45870.105*
H28B−0.27130.29880.41430.105*
H28C−0.27560.36610.26330.105*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.039 (2)0.0260 (19)0.049 (2)0.0093 (17)0.0054 (19)0.0025 (17)
C20.041 (2)0.0303 (19)0.035 (2)0.0077 (17)0.0034 (17)−0.0038 (16)
C30.064 (2)0.0462 (19)0.043 (2)0.0081 (17)0.007 (3)0.005 (3)
C40.058 (3)0.056 (2)0.054 (3)0.0082 (19)−0.009 (3)−0.016 (3)
C50.039 (2)0.053 (3)0.089 (3)−0.0058 (19)−0.002 (3)−0.005 (2)
C60.050 (3)0.051 (2)0.052 (2)0.001 (2)0.009 (2)0.003 (2)
C70.056 (2)0.0311 (19)0.033 (2)0.0004 (19)0.0127 (18)−0.0038 (14)
N80.0384 (19)0.0394 (17)0.0355 (16)0.0009 (14)0.0112 (14)−0.0026 (14)
C90.053 (3)0.039 (2)0.0346 (19)−0.0049 (19)0.0174 (18)−0.0038 (17)
C100.038 (2)0.0445 (19)0.040 (2)−0.0079 (17)0.0074 (17)−0.0095 (18)
N110.0423 (14)0.0400 (14)0.0400 (13)0.0048 (13)−0.0037 (18)−0.0058 (18)
V120.0404 (3)0.0357 (3)0.0366 (3)0.0011 (3)0.0062 (4)0.0047 (4)
O130.0417 (13)0.0517 (14)0.0434 (17)0.0064 (10)0.0104 (11)0.0074 (12)
O140.0508 (14)0.0579 (14)0.0315 (11)0.0065 (16)0.0078 (11)0.0070 (11)
O150.0559 (16)0.0353 (13)0.0538 (12)−0.0029 (13)0.0005 (11)−0.0044 (11)
C260.082 (3)0.0554 (19)0.0399 (16)−0.0127 (18)0.015 (3)0.005 (3)
C270.067 (2)0.047 (2)0.0469 (18)−0.008 (2)0.013 (2)−0.007 (2)
C280.046 (2)0.085 (3)0.078 (3)−0.017 (2)0.004 (2)−0.004 (3)

Geometric parameters (Å, °)

C1—O131.339 (4)C10—N111.504 (4)
C1—C61.393 (5)C10—C281.527 (4)
C1—C21.402 (4)C10—C271.529 (4)
C2—C31.410 (5)N11—V122.118 (2)
C2—C71.465 (4)N11—H11A0.9000
C3—C41.359 (4)N11—H11B0.9000
C3—H3A0.9300V12—O151.6151 (19)
C4—C51.380 (5)V12—O141.6352 (18)
C4—H4A0.9300V12—O131.883 (2)
C5—C61.380 (4)C26—H26A0.9600
C5—H5A0.9300C26—H26B0.9600
C6—H6A0.9300C26—H26C0.9600
C7—N81.304 (4)C27—H27A0.9600
C7—C261.510 (4)C27—H27B0.9600
N8—C91.473 (4)C27—H27C0.9600
N8—V122.171 (3)C28—H28A0.9600
C9—C101.515 (4)C28—H28B0.9600
C9—H9A0.9700C28—H28C0.9600
C9—H9B0.9700
O13—C1—C6118.7 (3)C10—N11—V12112.76 (17)
O13—C1—C2122.7 (3)C10—N11—H11A109.0
C6—C1—C2118.5 (3)V12—N11—H11A109.0
C1—C2—C3118.7 (3)C10—N11—H11B109.0
C1—C2—C7121.0 (3)V12—N11—H11B109.0
C3—C2—C7120.2 (3)H11A—N11—H11B107.8
C4—C3—C2121.5 (4)O15—V12—O14109.85 (10)
C4—C3—H3A119.2O15—V12—O13106.06 (11)
C2—C3—H3A119.2O14—V12—O1398.12 (10)
C3—C4—C5119.7 (4)O15—V12—N1198.71 (11)
C3—C4—H4A120.1O14—V12—N1189.77 (13)
C5—C4—H4A120.1O13—V12—N11149.49 (10)
C6—C5—C4120.1 (4)O15—V12—N8106.46 (9)
C6—C5—H5A119.9O14—V12—N8142.05 (11)
C4—C5—H5A119.9O13—V12—N881.94 (9)
C5—C6—C1121.2 (3)N11—V12—N874.05 (12)
C5—C6—H6A119.4C1—O13—V12122.65 (18)
C1—C6—H6A119.4C7—C26—H26A109.5
N8—C7—C2121.4 (3)C7—C26—H26B109.5
N8—C7—C26120.6 (3)H26A—C26—H26B109.5
C2—C7—C26118.0 (3)C7—C26—H26C109.5
C7—N8—C9119.5 (3)H26A—C26—H26C109.5
C7—N8—V12123.3 (2)H26B—C26—H26C109.5
C9—N8—V12116.56 (19)C10—C27—H27A109.5
N8—C9—C10109.6 (2)C10—C27—H27B109.5
N8—C9—H9A109.8H27A—C27—H27B109.5
C10—C9—H9A109.8C10—C27—H27C109.5
N8—C9—H9B109.8H27A—C27—H27C109.5
C10—C9—H9B109.8H27B—C27—H27C109.5
H9A—C9—H9B108.2C10—C28—H28A109.5
N11—C10—C9103.7 (3)C10—C28—H28B109.5
N11—C10—C28110.0 (2)H28A—C28—H28B109.5
C9—C10—C28111.5 (3)C10—C28—H28C109.5
N11—C10—C27108.4 (3)H28A—C28—H28C109.5
C9—C10—C27112.2 (3)H28B—C28—H28C109.5
C28—C10—C27110.7 (3)
O13—C1—C2—C3−178.0 (3)N8—C9—C10—C2774.2 (3)
C6—C1—C2—C34.6 (4)C9—C10—N11—V1253.3 (3)
O13—C1—C2—C74.0 (4)C28—C10—N11—V12172.7 (2)
C6—C1—C2—C7−173.4 (3)C27—C10—N11—V12−66.2 (3)
C1—C2—C3—C4−1.5 (4)C10—N11—V12—O15−139.7 (2)
C7—C2—C3—C4176.6 (3)C10—N11—V12—O14110.2 (3)
C2—C3—C4—C5−0.9 (5)C10—N11—V12—O134.5 (4)
C3—C4—C5—C60.0 (5)C10—N11—V12—N8−35.0 (2)
C4—C5—C6—C13.4 (6)C7—N8—V12—O15−66.8 (3)
O13—C1—C6—C5176.9 (3)C9—N8—V12—O15103.9 (2)
C2—C1—C6—C5−5.6 (5)C7—N8—V12—O14130.5 (2)
C1—C2—C7—N8−20.0 (4)C9—N8—V12—O14−58.7 (3)
C3—C2—C7—N8162.0 (3)C7—N8—V12—O1337.6 (2)
C1—C2—C7—C26159.8 (3)C9—N8—V12—O13−151.6 (2)
C3—C2—C7—C26−18.2 (4)C7—N8—V12—N11−161.4 (3)
C2—C7—N8—C9−179.5 (3)C9—N8—V12—N119.3 (2)
C26—C7—N8—C90.8 (4)C6—C1—O13—V12−136.7 (2)
C2—C7—N8—V12−9.0 (4)C2—C1—O13—V1245.9 (4)
C26—C7—N8—V12171.2 (2)O15—V12—O13—C150.2 (2)
C7—N8—C9—C10−172.0 (3)O14—V12—O13—C1163.6 (2)
V12—N8—C9—C1016.9 (3)N11—V12—O13—C1−92.8 (3)
N8—C9—C10—N11−42.6 (3)N8—V12—O13—C1−54.7 (2)
N8—C9—C10—C28−161.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N11—H11A···O14i0.902.082.942 (4)159
N11—H11B···O15ii0.902.293.173 (4)168
C26—H26B···O14iii0.962.463.370 (4)158

Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x, −y+1, z−1/2; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2526).

References

  • Carter-Franklin, J. N., Parrish, J. D., Tchirret-Guth, R. A., Little, R. D. & Butler, A. (2003). J. Am. Chem. Soc.125, 3688–3689. [PubMed]
  • Eady, R. R. (2003). Coord. Chem. Rev.237, 23–30.
  • Evangelou, A. M. (2002). Crit. Rev. Oncol. Hematol.42, 249–265. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Holmes, R. R. (1984). Prog. Inorg. Chem.32, 119–235.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2003). Polyhedron, 22, 1009–1018.
  • Kwiatkowski, E., Romanowski, G., Nowicki, W., Kwiatkowski, M. & Suwińska, K. (2007). Polyhedron, 26, 2559–2568.
  • Mendz, G. L. (1991). Arch. Biochem. Biophys.291, 201–211. [PubMed]
  • Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem.32, 6119–6121.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  • Parekh, H. M., Panchal, P. K. & Patel, M. N. (2006). Pharm. Chem. J. Chem.40, 494–497.
  • Rao, S. T., Westhof, E. & Sundaralingam, M. (1981). Acta Cryst. A37, 421–425.
  • Rehder, D., Antoni, G., Licini, G. M., Schulzke, C. & Meier, B. (2003). Coord. Chem. Rev.237, 53–63.
  • Rehder, D., Costa Pessoa, J., Geraldes, C. F. G. C., Castro, M. M. C. A., Kabanos, T., Kiss, T., Meier, B., Micera, G., Pettersson, L., Rangel, M., Salifoglou, A., Turel, I. & Wang, D. (2002). J. Biol. Inorg. Chem.7, 384–396. [PubMed]
  • Shahzadi, S., Ali, S., Parvez, M., Badshah, A., Ahmed, E. & Malik, A. (2007). Russ. J. Inorg. Chem.52, 386–393.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography