PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o286.
Published online 2009 January 10. doi:  10.1107/S1600536809000646
PMCID: PMC2968250

1,4-Bis(2-pyridylmethyl­eneamino­meth­yl)benzene

Abstract

The asymmetric unit of the centrosymmetric title compound, C20H18N4, contains one half-mol­ecule. The pyridine and benzene rings are oriented at a dihedral angle of 77.21 (7)°.

Related literature

For general background, see: Barboiu et al. (2006 [triangle]); Keegan et al. (2002 [triangle]); Yue et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o286-scheme1.jpg

Experimental

Crystal data

  • C20H18N4
  • M r = 314.38
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o286-efi1.jpg
  • a = 4.527 (3) Å
  • b = 10.117 (6) Å
  • c = 10.456 (6) Å
  • α = 61.086 (7)°
  • β = 88.543 (8)°
  • γ = 82.242 (8)°
  • V = 414.9 (4) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 (2) K
  • 0.32 × 0.30 × 0.23 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000 [triangle]) T min = 0.976, T max = 0.990
  • 2909 measured reflections
  • 1449 independent reflections
  • 1250 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.105
  • S = 1.01
  • 1449 reflections
  • 109 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000646/hk2592sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000646/hk2592Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center for Testing and Analysis at Yangzhou University for support.

supplementary crystallographic information

Comment

Bipyridyl-type bidentate Schiff base ligands have been utilized intensively to assemble various coordination polymers with interesting topologies and fascinating structural diversities (Barboiu et al., 2006; Keegan et al., 2002; Yue et al., 2004). We report herein the crystal structure of the title compound.

The asymmetric unit of the title compound (Fig. 1) contains one-half of the centrosymmetric molecule, where the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/C1-C5) and B (C8-C10/C8A-C10A) are, of course, planar, and they are oriented at a dihedral angle of 77.21 (7)° [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Experimental

The title compound was prepared from the condensation reaction between pyridine-2-carboxaldehyde (100 mmol) and 1,4-benzenedimethanamine (50 mmol) in tetrahydrofuran (yield; 83%). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution at room temperature.

Refinement

H atoms were positioned geometrically, with C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (A) 1 - x, 1 - y, 1 - z].

Crystal data

C20H18N4Z = 1
Mr = 314.38F(000) = 166
Triclinic, P1Dx = 1.258 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.527 (3) ÅCell parameters from 1582 reflections
b = 10.117 (6) Åθ = 2.2–27.0°
c = 10.456 (6) ŵ = 0.08 mm1
α = 61.086 (7)°T = 296 K
β = 88.543 (8)°Block, colorless
γ = 82.242 (8)°0.32 × 0.30 × 0.23 mm
V = 414.9 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer1449 independent reflections
Radiation source: fine-focus sealed tube1250 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000)h = −5→5
Tmin = 0.976, Tmax = 0.990k = −12→12
2909 measured reflectionsl = −12→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0582P)2 + 0.0501P] where P = (Fo2 + 2Fc2)/3
1449 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.8015 (3)0.26368 (14)1.18773 (13)0.0628 (3)
N20.4321 (2)0.26607 (12)0.89307 (11)0.0516 (3)
C10.7265 (3)0.20335 (14)1.10637 (13)0.0477 (3)
C20.8567 (3)0.06149 (15)1.12895 (14)0.0536 (3)
H20.79480.02151.07220.064*
C31.0786 (3)−0.01952 (17)1.23630 (16)0.0622 (4)
H31.1727−0.11401.25190.075*
C41.1584 (4)0.04142 (19)1.31980 (16)0.0673 (4)
H41.3071−0.01101.39370.081*
C51.0143 (4)0.18146 (19)1.29230 (17)0.0714 (5)
H51.06870.22151.35030.086*
C60.4970 (3)0.29926 (14)0.98916 (14)0.0497 (3)
H60.39680.38730.98620.060*
C70.2103 (3)0.37330 (16)0.77804 (14)0.0560 (4)
H7A0.12810.45430.79860.067*
H7B0.04840.32100.77480.067*
C80.3559 (3)0.43975 (14)0.63283 (13)0.0470 (3)
C90.3629 (3)0.37288 (15)0.54431 (14)0.0541 (3)
H90.27050.28660.57330.065*
C100.4953 (3)0.56793 (15)0.58621 (14)0.0544 (4)
H100.49350.61500.64380.065*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0703 (8)0.0659 (7)0.0620 (7)−0.0068 (6)−0.0016 (6)−0.0391 (6)
N20.0562 (7)0.0502 (6)0.0452 (6)−0.0045 (5)0.0029 (5)−0.0215 (5)
C10.0499 (7)0.0519 (7)0.0441 (7)−0.0121 (6)0.0107 (5)−0.0246 (6)
C20.0571 (8)0.0527 (7)0.0524 (7)−0.0080 (6)0.0060 (6)−0.0268 (6)
C30.0614 (9)0.0552 (8)0.0598 (8)−0.0025 (6)0.0032 (7)−0.0214 (7)
C40.0614 (9)0.0776 (10)0.0520 (8)−0.0078 (8)−0.0027 (7)−0.0231 (8)
C50.0784 (11)0.0846 (11)0.0626 (9)−0.0120 (9)−0.0046 (8)−0.0441 (9)
C60.0521 (7)0.0461 (7)0.0512 (7)−0.0057 (5)0.0079 (6)−0.0245 (6)
C70.0507 (8)0.0607 (8)0.0542 (8)−0.0029 (6)0.0009 (6)−0.0271 (7)
C80.0393 (6)0.0488 (7)0.0470 (7)0.0033 (5)−0.0071 (5)−0.0206 (6)
C90.0563 (8)0.0498 (7)0.0571 (8)−0.0099 (6)−0.0004 (6)−0.0258 (6)
C100.0593 (8)0.0566 (8)0.0539 (8)−0.0048 (6)−0.0020 (6)−0.0326 (6)

Geometric parameters (Å, °)

N1—C11.3358 (17)C6—C11.472 (2)
N1—C51.332 (2)C6—H60.9300
N2—C61.2555 (17)C7—H7A0.9700
N2—C71.4620 (18)C7—H7B0.9700
C1—C21.383 (2)C8—C71.5078 (19)
C2—C31.373 (2)C8—C91.3832 (19)
C2—H20.9300C8—C101.383 (2)
C3—C41.367 (2)C9—C10i1.379 (2)
C3—H30.9300C9—H90.9300
C4—C51.372 (2)C10—C9i1.379 (2)
C4—H40.9300C10—H100.9300
C5—H50.9300
C5—N1—C1116.79 (13)N2—C6—H6118.9
C6—N2—C7117.39 (12)C1—C6—H6118.9
N1—C1—C2122.69 (13)N2—C7—C8109.34 (11)
N1—C1—C6115.30 (12)N2—C7—H7A109.8
C2—C1—C6122.01 (12)C8—C7—H7A109.8
C3—C2—C1119.09 (13)N2—C7—H7B109.8
C3—C2—H2120.5C8—C7—H7B109.8
C1—C2—H2120.5H7A—C7—H7B108.3
C4—C3—C2118.73 (14)C9—C8—C7121.61 (12)
C4—C3—H3120.6C10—C8—C7120.48 (11)
C2—C3—H3120.6C10i—C9—C8121.07 (13)
C3—C4—C5118.57 (14)C10—C8—C9117.88 (12)
C3—C4—H4120.7C10i—C9—H9119.5
C5—C4—H4120.7C8—C9—H9119.5
N1—C5—C4124.10 (14)C9i—C10—C8121.05 (12)
N1—C5—H5117.9C9i—C10—H10119.5
C4—C5—H5117.9C8—C10—H10119.5
N2—C6—C1122.13 (12)
C5—N1—C1—C21.0 (2)C3—C4—C5—N1−0.7 (2)
C5—N1—C1—C6−178.28 (12)N2—C6—C1—N1170.79 (11)
C1—N1—C5—C40.3 (2)N2—C6—C1—C2−8.52 (19)
C7—N2—C6—C1−177.26 (11)C9—C8—C7—N290.82 (14)
C6—N2—C7—C8115.21 (13)C10—C8—C7—N2−87.19 (15)
N1—C1—C2—C3−2.0 (2)C7—C8—C9—C10i−178.00 (12)
C6—C1—C2—C3177.27 (11)C10—C8—C9—C10i0.1 (2)
C1—C2—C3—C41.6 (2)C7—C8—C10—C9i178.03 (12)
C2—C3—C4—C5−0.3 (2)C9—C8—C10—C9i−0.1 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2592).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Barboiu, M., Petit, E., van der Lee, A. & Vaughan, G. (2006). Inorg. Chem 45, 484–486. [PubMed]
  • Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Keegan, J., Kruger, P. E., Nieuwenhuyzen, M. & Martin, N. (2002). Cryst. Growth Des 2, 329–332.
  • Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yue, Y. F., Gao, E. Q., Bai, S. Q., He, Z. & Yan, C. H. (2004). CrystEngComm, 6, 549–555.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography