PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m127–m128.
Published online 2009 January 8. doi:  10.1107/S1600536808043298
PMCID: PMC2968248

1-Acetyl-5-ferrocenyl-3-phenyl-2-pyrazoline

Abstract

In the title compound, [Fe(C5H5)(C16H15N2O)], the pyrazoline ring and the phenyl ring are nearly coplanar, making a dihedral angle of 6.54 (2)°, while the substituted cyclo­penta­dienyl ring is twisted out of the pyrazoline ring plane by 81.32 (1)°. The mol­ecules in the crystal structure are held together by weak C—H(...)O inter­molecular hydrogen bonds and two C—H(...)π inter­actions.

Related literature

For background to the applications of pyrazolines, see: Amr et al. (2006 [triangle]); Biot et al. (2004 [triangle]); Fang et al. (2003 [triangle]); Fouda et al. (2007 [triangle]); Guirado et al. (2004 [triangle]); Jaouen et al. (2004 [triangle]); Johnson et al. (2007 [triangle]); Küçükgüzel et al. (2000 [triangle]); Karthikeyan et al. (2007 [triangle]); Özdemir et al. (2007 [triangle]). For bond-length data, see: Jian et al. (2008 [triangle]). For related structures, see: Turgut Cin et al. (2008 [triangle]); Kudar et al. (2005 [triangle]); Köysal et al. (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m127-scheme1.jpg

Experimental

Crystal data

  • [Fe(C5H5)(C16H15N2O)]
  • M r = 372.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m127-efi3.jpg
  • a = 6.0762 (4) Å
  • b = 43.155 (2) Å
  • c = 7.3512 (4) Å
  • β = 116.218 (4)°
  • V = 1729.33 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.88 mm−1
  • T = 296 (2) K
  • 0.49 × 0.33 × 0.05 mm

Data collection

  • STOE IPDS 2 diffractometer
  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002 [triangle]) T min = 0.662, T max = 0.962
  • 15964 measured reflections
  • 3256 independent reflections
  • 2765 reflections with I > 2σ(I)
  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.093
  • S = 1.04
  • 3256 reflections
  • 227 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.46 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002 [triangle]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043298/at2695Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Research Board of Akdeniz University (grant No. BAP-2007.01.0105.001) for financial support and the Faculty of Arts and Sciences, Ondokuz Mayıs University, for the Stoe IPDS 2 diffractometer (purchased under grand F.279 of the University Research Fund).

supplementary crystallographic information

Comment

Pyrazolines are well known nitrogen-containing five-membered heterocyclic compounds. Condensation of nitrogen-containing binucleophilic agents with α, β unsaturated ketones is one of the most suitable synthetic pathways for 2-pyrazolines (Kudar et al., 2005), which possess widespread pharmaceutical properties such as antimicrobial (Küçükgüzel et al., 2000), anticonvulsant (Karthikeyan et al., 2007), antidepressant (Özdemir et al., 2007), antiandrogenic (Amr et al., 2006), antifungal and anti-inflammatory (Guirado et al., 2004) activities. Furthermore, N-acetylated 2-pyrazolines are inhibitors of kinesin spindle protein (KSP); potentially useful for the treatment cancer (Johnson et al., 2007). Metallocenes are also known to exhibit a wide range of biological activity. Among them ferrocenyl compounds display interesting antibacterial (Fouda et al., 2007), antitumor (Jaouen et al., 2004), antimalarial and antifungal (Biot et al., 2004) activities. Therefore, incorporation of a ferrocene fragment into a heterocyclic ring may enhance their biological activities or generate new medicinal properties (Fang et al., 2003). As a part of an ongoing investigation of the chemistry of ferrocenyl pyrazolines, the title compound (I) was synthesized and its crystal structure was determined.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle of 6.54 (2)° between pyrazoline ring and the phenyl ring indicates that they are conjugated with each other; this is accord with the C1—C7 bond [1.474 (3) Å], which has double-bond character (Jian et al., 2008). Furthermore, N1—C7 bond length [1.286 (3) Å] increased as a result of this conjugation. This observation is in good agreement with those reported for 1-acetyl-3-ferrocenyl-5-(2-nitrophenyl)-2-pyrazoline (Turgut Cin et al., 2008), 5-ferrocenyl-3-(p-methoxyphenyl)-1-(2-pyridyl) -2-pyrazoline (Kudar et al., 2005) and 3-(4-fluorophenyl)-N-methyl-5- (4-methylphenyl)-2-pyrazoline-1-thiocarboxamide (Köysal et al., 2005).

The Fe—Cgs and Fe—Cgas distances are 1.6454 (13)Å and 1.6510 (15) Å, respectively, and the Cgs—Fe—Cgas angle is 178.90 (8)°, where Cgs and Cgas are the centroids of the substituted and unsubstituted Cp rings. The small dihedral angle of 3.2963 (2)° between the unsubstituted and substituted Cp rings exposes that the two Cp rings are parallel to each other. The average C12—CgsCgas—C20 torsion angle of 4.789 (2)° brings that the two Cp rings of the ferrocenyl group is nearly in an eclipsed conformation.

The pyrazoline ring and substituted Cp ring make a dihedral angle of 81.32 (1)°. The dihedral angle between the phenyl ring and substituted Cp ring is 75.82 (1)°, whereas the phenyl ring plane deviates from the unsubstituted Cp ring with an angle of 76.60 (1)°. The molecules in the crystal held together by two weak intermolecular C5—H5···O1 and C16—H16···O1 hydrogen bonds and two C—H···π interactions (Table 1, Fig. 2).

Experimental

A mixture of 3-ferrocenyl-1-phenyl-propen-2-one (0.32 mmol, 0.1 g), 80% hydrazine monohydrate (7.04 mmol, 0.45 g) and glacial acetic acid (10 ml) was refluxed under nitrogen atmosphere for 4 h. TLC indicated the formation of the reaction product. It was poured into ice-water to give orange solid. The participate was separated by filtration and washed with water. The solid product was dried at room temperature. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from methanol at room temperature (Yield 82%; m.p. 456–457 K). IR (KBr, cm-1): 1647 (C=O), 1596 (C=N), 1580 (C=C), 1102 (C—N), 507 (Cp—Fe—Cp). 1H-NMR (CDCl3, p.p.m..): 2.33 (s, 1H, CH3), 3.50 (dd, 1H, pyr.), 3.68 (dd, 1H, pyr.), 4.02 (s, 1H, Fc), 4.12 (s, 1H, Fc), 4.16 (s, 5H, Fc), 4.18 (s, 1H, Fc), 4.51 (s, 1H, Fc), 5.51 (dd, 1H, pyr.), 7.47–7.81 (m, 5H, Arom.). 13C-NMR (CDCl3, p.p.m.): 22.04 (CH3), 39.54 (pyr. CH2), 55.37 (pyr. CH), 65.57 (CFc), 68.22 (CFc), 68.37 (CFc), 68.58 (CFc), 70.34 (CFc), 87.38 (CFcipso), 126.53 (Cphenyl), 128.81 (Cphenyl), 130.27 (Cphenyl), 131.59 (Cphenyl), 153.88 (pyr. C=N), 168.87 (C=O).

Refinement

All C—H atoms were refined using the riding model approximation, with C—H = 0.93–0.98Å [Uiso(H) = 1.2 or 1.5Ueq(C)].

Figures

Fig. 1.
A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability.
Fig. 2.
The crystal structure of (I), showing both C—H···O intermolecular hydrogen bonds and C—H···π interactions as dashed lines. H atoms not involved in hydrogen bonds have been omitted ...

Crystal data

[Fe(C5H5)(CH15N2O)]F(000) = 776
Mr = 372.24Dx = 1.430 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15964 reflections
a = 6.0762 (4) Åθ = 1.9–26.2°
b = 43.155 (2) ŵ = 0.88 mm1
c = 7.3512 (4) ÅT = 296 K
β = 116.218 (4)°Prism, brown
V = 1729.33 (17) Å30.49 × 0.33 × 0.05 mm
Z = 4

Data collection

STOE IPDS 2 diffractometer3256 independent reflections
Radiation source: fine-focus sealed tube2765 reflections with I > 2σ(I)
plane graphiteRint = 0.045
ω scansθmax = 25.7°, θmin = 2.8°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)h = −7→7
Tmin = 0.662, Tmax = 0.962k = −52→51
15964 measured reflectionsl = −8→8

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0493P)2 + 0.5221P] where P = (Fo2 + 2Fc2)/3
3256 reflections(Δ/σ)max = 0.002
227 parametersΔρmax = 0.23 e Å3
1 restraintΔρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4032 (4)0.43314 (5)0.3252 (3)0.0411 (4)
C20.4385 (4)0.46493 (5)0.3407 (3)0.0495 (5)
H20.37320.47660.41150.059*
C30.5694 (5)0.47951 (6)0.2524 (3)0.0579 (6)
H30.59320.50080.26450.069*
C40.6652 (5)0.46210 (6)0.1453 (4)0.0588 (6)
H40.75850.47170.08970.071*
C50.6226 (4)0.43077 (6)0.1213 (3)0.0559 (6)
H50.68120.41930.04460.067*
C60.4926 (4)0.41618 (5)0.2109 (3)0.0482 (5)
H60.46480.39490.19470.058*
C70.2756 (4)0.41761 (5)0.4301 (3)0.0406 (4)
C80.2110 (5)0.38395 (5)0.4107 (4)0.0542 (5)
H8A0.35580.37110.44910.065*
H8B0.09400.37880.27320.065*
C90.0970 (4)0.37977 (5)0.5595 (3)0.0458 (5)
H9−0.07250.37250.48570.055*
C10−0.0242 (4)0.42188 (5)0.7322 (3)0.0482 (5)
C11−0.0126 (4)0.45555 (6)0.7829 (4)0.0547 (6)
H11A0.13610.45970.90280.066*
H11B−0.15110.46100.80650.066*
H11C−0.01530.46760.67220.066*
C120.2353 (4)0.35877 (5)0.7359 (3)0.0426 (4)
C130.1310 (5)0.33836 (6)0.8274 (4)0.0541 (5)
H13−0.03580.33560.78740.065*
C140.3218 (6)0.32297 (7)0.9888 (4)0.0700 (7)
H140.30340.30801.07220.084*
C150.5448 (5)0.33420 (7)1.0017 (4)0.0711 (7)
H150.70010.32821.09690.085*
C160.4944 (4)0.35620 (6)0.8458 (4)0.0554 (5)
H160.60990.36700.81980.067*
C170.3595 (9)0.26768 (7)0.6984 (6)0.0991 (13)
H170.36630.25310.79390.119*
C180.5592 (7)0.28122 (7)0.6853 (5)0.0803 (9)
H180.72340.27740.77130.096*
C190.4730 (5)0.30115 (6)0.5240 (4)0.0611 (6)
H190.57060.31290.48240.073*
C200.2195 (5)0.30119 (7)0.4321 (4)0.0634 (6)
H200.11830.31290.32010.076*
C210.1421 (7)0.28010 (8)0.5394 (6)0.0942 (12)
H21−0.01880.27530.51180.113*
N10.2119 (3)0.43277 (4)0.5499 (2)0.0415 (4)
N20.0981 (3)0.41220 (4)0.6266 (3)0.0460 (4)
O1−0.1350 (3)0.40299 (4)0.7846 (3)0.0664 (5)
Fe10.34526 (6)0.314282 (7)0.72673 (4)0.04627 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0476 (10)0.0436 (11)0.0351 (9)0.0025 (8)0.0209 (8)0.0023 (8)
C20.0659 (13)0.0453 (13)0.0471 (11)−0.0044 (10)0.0339 (11)−0.0033 (9)
C30.0803 (15)0.0497 (14)0.0555 (13)−0.0140 (12)0.0407 (12)−0.0041 (10)
C40.0671 (14)0.0682 (17)0.0538 (13)−0.0073 (12)0.0382 (11)0.0038 (11)
C50.0633 (14)0.0658 (16)0.0511 (12)0.0108 (11)0.0365 (11)0.0039 (11)
C60.0597 (12)0.0431 (12)0.0472 (11)0.0074 (9)0.0286 (10)0.0035 (9)
C70.0484 (10)0.0365 (11)0.0395 (10)0.0026 (8)0.0220 (9)0.0023 (8)
C80.0817 (15)0.0400 (12)0.0555 (12)−0.0002 (11)0.0436 (12)−0.0006 (10)
C90.0549 (12)0.0370 (11)0.0526 (11)−0.0039 (9)0.0301 (10)−0.0027 (9)
C100.0479 (11)0.0500 (13)0.0550 (12)0.0037 (9)0.0305 (10)0.0021 (10)
C110.0625 (13)0.0508 (14)0.0627 (13)0.0073 (11)0.0385 (12)−0.0016 (11)
C120.0514 (11)0.0360 (11)0.0504 (11)−0.0037 (8)0.0316 (9)−0.0050 (8)
C130.0717 (14)0.0464 (13)0.0640 (14)−0.0035 (11)0.0480 (12)0.0000 (11)
C140.112 (2)0.0588 (16)0.0556 (14)0.0114 (15)0.0519 (15)0.0085 (12)
C150.0776 (17)0.0735 (19)0.0495 (13)0.0159 (15)0.0165 (12)−0.0036 (13)
C160.0543 (12)0.0516 (14)0.0614 (13)−0.0045 (10)0.0264 (11)−0.0113 (11)
C170.195 (4)0.0351 (15)0.106 (3)0.004 (2)0.102 (3)0.0044 (15)
C180.102 (2)0.0650 (19)0.0792 (18)0.0324 (17)0.0446 (17)0.0048 (15)
C190.0748 (16)0.0577 (15)0.0647 (14)0.0012 (12)0.0434 (13)−0.0073 (12)
C200.0726 (16)0.0580 (16)0.0581 (14)0.0058 (12)0.0274 (12)−0.0140 (12)
C210.104 (2)0.075 (2)0.141 (3)−0.0429 (19)0.088 (3)−0.059 (2)
N10.0475 (9)0.0362 (9)0.0476 (9)0.0001 (7)0.0273 (8)0.0034 (7)
N20.0572 (10)0.0357 (9)0.0577 (10)−0.0002 (8)0.0369 (9)0.0011 (8)
O10.0712 (11)0.0596 (11)0.0951 (13)−0.0052 (8)0.0611 (10)0.0010 (9)
Fe10.0639 (2)0.03565 (19)0.04901 (19)0.00135 (13)0.03384 (16)0.00207 (13)

Geometric parameters (Å, °)

C1—C21.385 (3)C12—Fe12.044 (2)
C1—C61.393 (3)C13—C141.406 (4)
C1—C71.474 (3)C13—Fe12.043 (2)
C2—C31.381 (3)C13—H130.9300
C2—H20.9300C14—C151.402 (4)
C3—C41.388 (3)C14—Fe12.029 (2)
C3—H30.9300C14—H140.9300
C4—C51.373 (4)C15—C161.414 (4)
C4—H40.9300C15—Fe12.032 (3)
C5—C61.384 (3)C15—H150.9300
C5—H50.9300C16—Fe12.039 (2)
C6—H60.9300C16—H160.9300
C7—N11.286 (3)C17—C181.388 (5)
C7—C81.495 (3)C17—C211.426 (5)
C8—C91.542 (3)C17—Fe12.028 (3)
C8—H8A0.9700C17—H170.9300
C8—H8B0.9700C18—C191.368 (4)
C9—N21.483 (3)C18—Fe12.042 (3)
C9—C121.498 (3)C18—H180.9300
C9—H90.9800C19—C201.382 (4)
C10—O11.223 (3)C19—Fe12.041 (2)
C10—N21.356 (3)C19—H190.9300
C10—C111.494 (3)C20—C211.414 (4)
C11—H11A0.9600C20—Fe12.033 (2)
C11—H11B0.9600C20—H200.9300
C11—H11C0.9600C21—Fe12.023 (3)
C12—C131.417 (3)C21—H210.9300
C12—C161.421 (3)N1—N21.389 (2)
C2—C1—C6118.84 (19)C21—C17—H17126.1
C2—C1—C7120.36 (18)Fe1—C17—H17125.7
C6—C1—C7120.8 (2)C19—C18—C17108.3 (3)
C3—C2—C1120.9 (2)C19—C18—Fe170.41 (15)
C3—C2—H2119.6C17—C18—Fe169.52 (17)
C1—C2—H2119.6C19—C18—H18125.9
C2—C3—C4119.5 (2)C17—C18—H18125.9
C2—C3—H3120.2Fe1—C18—H18125.8
C4—C3—H3120.2C18—C19—C20110.0 (3)
C5—C4—C3120.2 (2)C18—C19—Fe170.45 (16)
C5—C4—H4119.9C20—C19—Fe169.86 (14)
C3—C4—H4119.9C18—C19—H19125.0
C4—C5—C6120.1 (2)C20—C19—H19125.0
C4—C5—H5120.0Fe1—C19—H19126.3
C6—C5—H5120.0C19—C20—C21107.4 (3)
C5—C6—C1120.3 (2)C19—C20—Fe170.49 (14)
C5—C6—H6119.8C21—C20—Fe169.23 (17)
C1—C6—H6119.8C19—C20—H20126.3
N1—C7—C1120.89 (19)C21—C20—H20126.3
N1—C7—C8114.44 (17)Fe1—C20—H20125.6
C1—C7—C8124.66 (17)C20—C21—C17106.5 (3)
C7—C8—C9103.14 (17)C20—C21—Fe169.96 (15)
C7—C8—H8A111.1C17—C21—Fe169.55 (18)
C9—C8—H8A111.1C20—C21—H21126.8
C7—C8—H8B111.1C17—C21—H21126.8
C9—C8—H8B111.1Fe1—C21—H21125.3
H8A—C8—H8B109.1C7—N1—N2107.90 (17)
N2—C9—C12111.39 (17)C10—N2—N1122.19 (18)
N2—C9—C8100.85 (16)C10—N2—C9123.93 (17)
C12—C9—C8115.38 (18)N1—N2—C9113.44 (15)
N2—C9—H9109.6C21—Fe1—C1741.22 (16)
C12—C9—H9109.6C21—Fe1—C14120.23 (13)
C8—C9—H9109.6C17—Fe1—C14107.75 (12)
O1—C10—N2119.5 (2)C21—Fe1—C15154.41 (16)
O1—C10—C11122.8 (2)C17—Fe1—C15119.21 (15)
N2—C10—C11117.72 (19)C14—Fe1—C1540.41 (12)
C10—C11—H11A109.5C21—Fe1—C2040.80 (13)
C10—C11—H11B109.5C17—Fe1—C2068.15 (13)
H11A—C11—H11B109.5C14—Fe1—C20155.83 (13)
C10—C11—H11C109.5C15—Fe1—C20162.88 (12)
H11A—C11—H11C109.5C21—Fe1—C16163.86 (15)
H11B—C11—H11C109.5C17—Fe1—C16153.23 (16)
C13—C12—C16107.3 (2)C14—Fe1—C1668.46 (11)
C13—C12—C9126.1 (2)C15—Fe1—C1640.64 (11)
C16—C12—C9126.57 (19)C20—Fe1—C16126.18 (11)
C13—C12—Fe169.67 (13)C21—Fe1—C1967.35 (11)
C16—C12—Fe169.46 (13)C17—Fe1—C1966.57 (12)
C9—C12—Fe1127.31 (14)C14—Fe1—C19162.48 (12)
C14—C13—C12108.6 (2)C15—Fe1—C19126.26 (12)
C14—C13—Fe169.26 (14)C20—Fe1—C1939.65 (11)
C12—C13—Fe169.76 (12)C16—Fe1—C19108.62 (10)
C14—C13—H13125.7C21—Fe1—C1868.04 (15)
C12—C13—H13125.7C17—Fe1—C1839.88 (15)
Fe1—C13—H13126.9C14—Fe1—C18125.98 (12)
C15—C14—C13107.8 (2)C15—Fe1—C18107.74 (13)
C15—C14—Fe169.91 (14)C20—Fe1—C1867.11 (12)
C13—C14—Fe170.32 (13)C16—Fe1—C18119.50 (13)
C15—C14—H14126.1C19—Fe1—C1839.14 (12)
C13—C14—H14126.1C21—Fe1—C13108.82 (11)
Fe1—C14—H14125.2C17—Fe1—C13127.20 (13)
C14—C15—C16108.7 (2)C14—Fe1—C1340.41 (11)
C14—C15—Fe169.68 (16)C15—Fe1—C1367.68 (11)
C16—C15—Fe169.97 (14)C20—Fe1—C13121.85 (11)
C14—C15—H15125.6C16—Fe1—C1368.10 (10)
C16—C15—H15125.6C19—Fe1—C13156.12 (11)
Fe1—C15—H15126.3C18—Fe1—C13163.57 (12)
C15—C16—C12107.6 (2)C21—Fe1—C12126.67 (14)
C15—C16—Fe169.40 (15)C17—Fe1—C12164.70 (15)
C12—C16—Fe169.80 (12)C14—Fe1—C1268.53 (10)
C15—C16—H16126.2C15—Fe1—C1268.28 (10)
C12—C16—H16126.2C20—Fe1—C12108.77 (10)
Fe1—C16—H16126.2C16—Fe1—C1240.74 (9)
C18—C17—C21107.8 (3)C19—Fe1—C12121.34 (10)
C18—C17—Fe170.60 (18)C18—Fe1—C12154.21 (12)
C21—C17—Fe169.23 (17)C13—Fe1—C1240.57 (8)
C18—C17—H17126.1
C6—C1—C2—C3−2.9 (3)C16—C15—Fe1—C17156.81 (18)
C7—C1—C2—C3176.4 (2)C16—C15—Fe1—C14−120.0 (2)
C1—C2—C3—C40.5 (4)C14—C15—Fe1—C20165.3 (3)
C2—C3—C4—C52.3 (4)C16—C15—Fe1—C2045.3 (4)
C3—C4—C5—C6−2.7 (4)C14—C15—Fe1—C16120.0 (2)
C4—C5—C6—C10.3 (3)C14—C15—Fe1—C19−164.32 (16)
C2—C1—C6—C52.5 (3)C16—C15—Fe1—C1975.72 (19)
C7—C1—C6—C5−176.8 (2)C14—C15—Fe1—C18−125.14 (19)
C2—C1—C7—N1−5.5 (3)C16—C15—Fe1—C18114.90 (17)
C6—C1—C7—N1173.87 (19)C14—C15—Fe1—C1338.05 (16)
C2—C1—C7—C8175.1 (2)C16—C15—Fe1—C13−81.90 (16)
C6—C1—C7—C8−5.6 (3)C14—C15—Fe1—C1281.97 (17)
N1—C7—C8—C9−2.9 (3)C16—C15—Fe1—C12−37.99 (14)
C1—C7—C8—C9176.64 (19)C19—C20—Fe1—C21−118.3 (3)
C7—C8—C9—N24.2 (2)C19—C20—Fe1—C17−79.2 (2)
C7—C8—C9—C12−115.9 (2)C21—C20—Fe1—C1739.1 (2)
N2—C9—C12—C13101.6 (2)C19—C20—Fe1—C14−164.0 (2)
C8—C9—C12—C13−144.2 (2)C21—C20—Fe1—C14−45.6 (4)
N2—C9—C12—C16−76.6 (3)C19—C20—Fe1—C1539.8 (4)
C8—C9—C12—C1637.6 (3)C21—C20—Fe1—C15158.1 (4)
N2—C9—C12—Fe1−167.51 (13)C19—C20—Fe1—C1674.78 (19)
C8—C9—C12—Fe1−53.3 (2)C21—C20—Fe1—C16−166.9 (2)
C16—C12—C13—C14−1.0 (3)C21—C20—Fe1—C19118.3 (3)
C9—C12—C13—C14−179.5 (2)C19—C20—Fe1—C18−35.92 (18)
Fe1—C12—C13—C1458.49 (17)C21—C20—Fe1—C1882.4 (2)
C16—C12—C13—Fe1−59.53 (15)C19—C20—Fe1—C13159.63 (16)
C9—C12—C13—Fe1122.0 (2)C21—C20—Fe1—C13−82.0 (2)
C12—C13—C14—C151.4 (3)C19—C20—Fe1—C12116.80 (16)
Fe1—C13—C14—C1560.16 (18)C21—C20—Fe1—C12−124.9 (2)
C12—C13—C14—Fe1−58.80 (16)C15—C16—Fe1—C21162.8 (4)
C13—C14—C15—C16−1.2 (3)C12—C16—Fe1—C2144.0 (4)
Fe1—C14—C15—C1659.26 (18)C15—C16—Fe1—C17−49.7 (3)
C13—C14—C15—Fe1−60.42 (18)C12—C16—Fe1—C17−168.6 (2)
C14—C15—C16—C120.5 (3)C15—C16—Fe1—C1437.14 (16)
Fe1—C15—C16—C1259.60 (15)C12—C16—Fe1—C14−81.68 (15)
C14—C15—C16—Fe1−59.08 (19)C12—C16—Fe1—C15−118.8 (2)
C13—C12—C16—C150.3 (3)C15—C16—Fe1—C20−164.97 (16)
C9—C12—C16—C15178.8 (2)C12—C16—Fe1—C2076.21 (16)
Fe1—C12—C16—C15−59.34 (17)C15—C16—Fe1—C19−124.45 (17)
C13—C12—C16—Fe159.67 (15)C12—C16—Fe1—C19116.73 (14)
C9—C12—C16—Fe1−121.9 (2)C15—C16—Fe1—C18−83.01 (19)
C21—C17—C18—C19−0.5 (3)C12—C16—Fe1—C18158.16 (14)
Fe1—C17—C18—C19−60.0 (2)C15—C16—Fe1—C1380.79 (17)
C21—C17—C18—Fe159.5 (2)C12—C16—Fe1—C13−38.03 (12)
C17—C18—C19—C200.6 (3)C15—C16—Fe1—C12118.8 (2)
Fe1—C18—C19—C20−58.80 (19)C18—C19—Fe1—C21−82.6 (2)
C17—C18—C19—Fe159.4 (2)C20—C19—Fe1—C2138.6 (2)
C18—C19—C20—C21−0.5 (3)C18—C19—Fe1—C17−37.6 (2)
Fe1—C19—C20—C21−59.63 (18)C20—C19—Fe1—C1783.5 (2)
C18—C19—C20—Fe159.1 (2)C18—C19—Fe1—C1436.8 (5)
C19—C20—C21—C170.1 (3)C20—C19—Fe1—C14157.9 (3)
Fe1—C20—C21—C17−60.3 (2)C18—C19—Fe1—C1572.4 (2)
C19—C20—C21—Fe160.43 (18)C20—C19—Fe1—C15−166.49 (17)
C18—C17—C21—C200.2 (3)C18—C19—Fe1—C20−121.1 (3)
Fe1—C17—C21—C2060.56 (19)C18—C19—Fe1—C16114.1 (2)
C18—C17—C21—Fe1−60.3 (2)C20—C19—Fe1—C16−124.73 (17)
C1—C7—N1—N2−179.60 (17)C20—C19—Fe1—C18121.1 (3)
C8—C7—N1—N2−0.1 (2)C18—C19—Fe1—C13−168.0 (3)
O1—C10—N2—N1175.1 (2)C20—C19—Fe1—C13−46.9 (3)
C11—C10—N2—N1−6.1 (3)C18—C19—Fe1—C12157.19 (19)
O1—C10—N2—C93.2 (3)C20—C19—Fe1—C12−81.69 (19)
C11—C10—N2—C9−177.9 (2)C19—C18—Fe1—C2180.7 (2)
C7—N1—N2—C10−169.37 (19)C17—C18—Fe1—C21−38.5 (2)
C7—N1—N2—C93.3 (2)C19—C18—Fe1—C17119.2 (3)
C12—C9—N2—C10−69.3 (3)C19—C18—Fe1—C14−167.12 (18)
C8—C9—N2—C10167.7 (2)C17—C18—Fe1—C1473.7 (3)
C12—C9—N2—N1118.16 (18)C19—C18—Fe1—C15−126.2 (2)
C8—C9—N2—N1−4.8 (2)C17—C18—Fe1—C15114.6 (2)
C20—C21—Fe1—C17−117.2 (2)C19—C18—Fe1—C2036.36 (18)
C20—C21—Fe1—C14160.19 (16)C17—C18—Fe1—C20−82.8 (2)
C17—C21—Fe1—C14−82.6 (2)C19—C18—Fe1—C16−83.5 (2)
C20—C21—Fe1—C15−165.3 (2)C17—C18—Fe1—C16157.3 (2)
C17—C21—Fe1—C15−48.0 (3)C17—C18—Fe1—C19−119.2 (3)
C17—C21—Fe1—C20117.2 (2)C19—C18—Fe1—C13162.8 (4)
C20—C21—Fe1—C1641.2 (5)C17—C18—Fe1—C1343.6 (5)
C17—C21—Fe1—C16158.4 (4)C19—C18—Fe1—C12−49.6 (4)
C20—C21—Fe1—C19−37.48 (16)C17—C18—Fe1—C12−168.8 (2)
C17—C21—Fe1—C1979.8 (2)C14—C13—Fe1—C21114.8 (2)
C20—C21—Fe1—C18−79.93 (18)C12—C13—Fe1—C21−124.90 (19)
C17—C21—Fe1—C1837.32 (18)C14—C13—Fe1—C1772.5 (2)
C20—C21—Fe1—C13117.28 (17)C12—C13—Fe1—C17−167.26 (19)
C17—C21—Fe1—C13−125.47 (19)C12—C13—Fe1—C14120.3 (2)
C20—C21—Fe1—C1275.59 (19)C14—C13—Fe1—C15−38.04 (18)
C17—C21—Fe1—C12−167.16 (17)C12—C13—Fe1—C1582.21 (16)
C18—C17—Fe1—C21118.7 (3)C14—C13—Fe1—C20157.98 (18)
C18—C17—Fe1—C14−125.4 (2)C12—C13—Fe1—C20−81.76 (17)
C21—C17—Fe1—C14115.90 (19)C14—C13—Fe1—C16−82.06 (18)
C18—C17—Fe1—C15−82.8 (2)C12—C13—Fe1—C1638.19 (14)
C21—C17—Fe1—C15158.42 (18)C14—C13—Fe1—C19−168.7 (3)
C18—C17—Fe1—C2080.0 (2)C12—C13—Fe1—C19−48.5 (3)
C21—C17—Fe1—C20−38.75 (17)C14—C13—Fe1—C1838.8 (5)
C18—C17—Fe1—C16−48.1 (3)C12—C13—Fe1—C18159.1 (4)
C21—C17—Fe1—C16−166.9 (2)C14—C13—Fe1—C12−120.3 (2)
C18—C17—Fe1—C1936.91 (19)C13—C12—Fe1—C2175.45 (19)
C21—C17—Fe1—C19−81.83 (19)C16—C12—Fe1—C21−166.07 (16)
C21—C17—Fe1—C18−118.7 (3)C9—C12—Fe1—C21−45.1 (2)
C18—C17—Fe1—C13−165.84 (18)C13—C12—Fe1—C1741.7 (5)
C21—C17—Fe1—C1375.4 (2)C16—C12—Fe1—C17160.2 (4)
C18—C17—Fe1—C12161.2 (3)C9—C12—Fe1—C17−78.8 (5)
C21—C17—Fe1—C1242.5 (5)C13—C12—Fe1—C14−36.99 (16)
C15—C14—Fe1—C21157.8 (2)C16—C12—Fe1—C1481.49 (16)
C13—C14—Fe1—C21−83.8 (2)C9—C12—Fe1—C14−157.5 (2)
C15—C14—Fe1—C17114.5 (2)C13—C12—Fe1—C15−80.60 (17)
C13—C14—Fe1—C17−127.1 (2)C16—C12—Fe1—C1537.89 (15)
C13—C14—Fe1—C15118.4 (2)C9—C12—Fe1—C15158.9 (2)
C15—C14—Fe1—C20−169.5 (2)C13—C12—Fe1—C20117.39 (15)
C13—C14—Fe1—C20−51.0 (3)C16—C12—Fe1—C20−124.12 (14)
C15—C14—Fe1—C16−37.34 (16)C9—C12—Fe1—C20−3.2 (2)
C13—C14—Fe1—C1681.07 (16)C13—C12—Fe1—C16−118.49 (19)
C15—C14—Fe1—C1946.4 (4)C9—C12—Fe1—C16121.0 (2)
C13—C14—Fe1—C19164.8 (3)C13—C12—Fe1—C19159.21 (15)
C15—C14—Fe1—C1874.2 (2)C16—C12—Fe1—C19−82.30 (16)
C13—C14—Fe1—C18−167.35 (17)C9—C12—Fe1—C1938.7 (2)
C15—C14—Fe1—C13−118.4 (2)C13—C12—Fe1—C18−166.6 (3)
C15—C14—Fe1—C12−81.29 (17)C16—C12—Fe1—C18−48.1 (3)
C13—C14—Fe1—C1237.13 (14)C9—C12—Fe1—C1872.9 (3)
C14—C15—Fe1—C21−49.1 (4)C16—C12—Fe1—C13118.49 (19)
C16—C15—Fe1—C21−169.0 (3)C9—C12—Fe1—C13−120.6 (2)
C14—C15—Fe1—C17−83.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.703.599 (3)163 (1)
C16—H16···O1ii0.932.293.201 (3)167 (1)
C17—H17···Cg1iii0.932.713.64 (4)174 (1)
C11—H11A···Cg2iv0.962.603.51 (5)158 (1)

Symmetry codes: (i) x+1, y, z−1; (ii) x+1, y, z; (iii) x, −y+1/2, z+1/2; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2695).

References

  • Amr, A. E. E., Abdel-Latif, N. A. & Abdalla, M. M. (2006). Bioorg. Med. Chem.14, 373–384. [PubMed]
  • Biot, C., Dessolin, J., Richard, I. & Dive, D. (2004). J. Organomet. Chem.689, 4678–4682.
  • Fang, J., Jin, Z., Li, Z. & Liu, W. (2003). J. Organomet. Chem.674, 1–9.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem.21, 613–625.
  • Guirado, A., Martiz, B. & Andreu, R. (2004). Tetrahedron Lett.45, 8523–8526.
  • Jaouen, G., Top, S., Vessireres, A., Leclercq, G., Vaissermann, J. & McGlinchey, M. J. (2004). Curr. Med. Chem.11, 2505–2517. [PubMed]
  • Jian, F., Zhao, P., Guo, H. & Li, Y. (2008). Spectrochim. Acta A, 69, 647–653. [PubMed]
  • Johnson, M., Younglove, B., Lee, L., LeBlanc, R., Holt, H., Hills, P., Mackay, H., Brown, T., Moobery, S. L. & Lee, M. (2007). Bioorg. Med. Chem. Lett.17, 5897–5901. [PubMed]
  • Karthikeyan, M. S., Holla, B. S. & Kumari, N. S. (2007). Eur. J. Med. Chem.42, 30–36. [PubMed]
  • Köysal, Y., Işık, S., Şahin, G. & Palaska, E. (2005). Acta Cryst. C61, o542–o544. [PubMed]
  • Küçükgüzel, G. S., Rollas, S., Erdeniz, H., Kiraz, M., Ekinci, A. C. & Vidin, A. (2000). Eur. J. Med. Chem.35, 761–771. [PubMed]
  • Kudar, V., Mady-Zsoldos, V., Simon, K., Csampai, A. & Sohar, P. (2005). J. Organomet. Chem.690, 4018–4026.
  • Özdemir, Z., Kandilci, H. B., Gümüşel, B., Çalış, Ü. & Bilgin, A. A. (2007). Eur. J. Med. Chem.42, 373–379. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2002). X-AREA and X-RED32 Stoe & Cie, Darmstadt, Germany.
  • Turgut Cin, G., Demirel, S., Karadayı, N. & Büyükgüngör, O. (2008). Acta Cryst. E64, m514–m515. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography