PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o393.
Published online 2009 January 28. doi:  10.1107/S1600536809002621
PMCID: PMC2968245

6-Bromo-1-ethyl-1H-2,1-benzothia­zin-4(3H)-one 2,2-dioxide

Abstract

In the title compound, C10H10BrNO3S, the S atom is four-coordinated in a distorted tetra­hedral configuration with nearly equal S=O bond distances; the S—C and S—N bond lengths are 1.755 (3) and 1.649 (3) Å, respectively. The heterocyclic thia­zine ring adopts a twist conformation. Adjacent mol­ecules are attached to each other through inter­molecular C—H(...)O hydrogen bonds, forming R 2 2(8) and R 2 2(14) ring motifs. The mol­ecules are stabilized by intra- and inter­molecular hydrogen bonds, forming a three-dimensional polymeric network.

Related literature

For previous work on benzothia­zines, see: Arshad et al. (2008 [triangle]); Shafiq, Khan et al. (2008 [triangle]); Shafiq, Tahir et al. (2008 [triangle]); Tahir et al. (2008 [triangle]). For puckering parameters, see: Cremer & Pople (1975 [triangle]). For graph-set motifs, see: Bernstein et al. (1995 [triangle]). For synthesis, see: Lombardino (1972 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o393-scheme1.jpg

Experimental

Crystal data

  • C10H10BrNO3S
  • M r = 304.16
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o393-efi1.jpg
  • a = 7.7164 (2) Å
  • b = 7.9729 (3) Å
  • c = 10.4579 (3) Å
  • α = 86.767 (2)°
  • β = 75.773 (1)°
  • γ = 66.912 (2)°
  • V = 573.13 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 3.76 mm−1
  • T = 296 (2) K
  • 0.28 × 0.16 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.486, T max = 0.639
  • 12369 measured reflections
  • 2846 independent reflections
  • 1840 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.095
  • S = 1.02
  • 2846 reflections
  • 158 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.91 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809002621/at2711sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002621/at2711Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

M. Shafiq gratefully acknowledges the Higher Education Commision, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Programme (PIN 042-120567-PS2-276).

supplementary crystallographic information

Comment

Our group is involved in synthesizing various derivatives of benzothiazine molecule (Shafiq, Khan et al., 2008; Shafiq, Tahir et al., 2008; Tahir et al., 2008; Arshad et al., 2008) and their characterization by X-ray studies. We, here, report the title compound (I), (Fig 1), in this context.

In the title compound, the bromo-substituated benzene ring A (C1–C6), is almost planar with alternate distortions at individual C atoms. The Br atom is at a distance of 0.073 (4) Å from the r.m.s. plane of ring A. The thiazine ring B (S1/N1/C1/C6–C8) is in the twisted form. The maximum puckering (Cremer & Pople, 1975) amplitude, QT, of ring A and ring B is 0.674 (2) Å. There exist an intramolecular H-bond of C—H···O type between the methylene group and the SO2 moiety. The intermolecular H-bonds [C8—H8A···.O3] and [C3—H3···.O2] (Table 1), joint the adjacent molecules forming ring motifs, (Bernstein et al., 1995), R22(8) and R22(14), respectively. The three asymmetric units joint in this way, are further linked through [C2—H2···O1] H-bonds with carbonyl moiety (Fig 2).

Experimental

The title compound was prepared in a three step scheme following the reported procedure (Lombardino, 1972). Starting material used was methyl-2-amino-5-bromo benzoate. It was reacted with methane sulfonyl chloride taking equimolar quantities, in dichloromethane. The pH was kept alkaline with triethylamine. The product of this step was then N-ethylated (ethyl iodide) and cyclized as reported in the above mentioned reference, to get the title compound which was recrystallized in ethanol for X-ray diffraction studies.

Refinement

The H atoms of methylene group were located from a difference Fourier map and refined freely. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Figures

Fig. 1.
ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H atoms are shown by small circles of arbitrary radii. The dotted line shows the intramolecular H-bond.
Fig. 2.
The partial packing figure (PLATON: Spek, 2003) which shows that intermolecular H-bonds form the ring motifs.

Crystal data

C10H10BrNO3SZ = 2
Mr = 304.16F(000) = 304
Triclinic, P1Dx = 1.762 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7164 (2) ÅCell parameters from 2847 reflections
b = 7.9729 (3) Åθ = 2.0–28.3°
c = 10.4579 (3) ŵ = 3.76 mm1
α = 86.767 (2)°T = 296 K
β = 75.773 (1)°Needle, colourless
γ = 66.912 (2)°0.28 × 0.16 × 0.12 mm
V = 573.13 (3) Å3

Data collection

Bruker Kappa APEXII CCD diffractometer2846 independent reflections
Radiation source: fine-focus sealed tube1840 reflections with I > 2σ(I)
graphiteRint = 0.034
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.0°
ω scansh = −10→9
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −10→10
Tmin = 0.486, Tmax = 0.639l = −13→13
12369 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.0388P)2 + 0.3304P] where P = (Fo2 + 2Fc2)/3
2846 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.91 e Å3
0 restraintsΔρmin = −0.57 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.36240 (6)0.15247 (6)−0.35948 (3)0.0686 (2)
S1−0.00069 (12)0.19519 (10)0.32296 (7)0.0435 (3)
O10.2170 (4)−0.2056 (3)0.0770 (3)0.0705 (10)
O2−0.1737 (3)0.2464 (3)0.2787 (2)0.0578 (8)
O3−0.0156 (4)0.2267 (3)0.4583 (2)0.0668 (10)
N10.1437 (4)0.2891 (3)0.2351 (2)0.0450 (9)
C10.1999 (4)0.2535 (4)0.0977 (3)0.0358 (9)
C20.2376 (5)0.3826 (4)0.0126 (3)0.0444 (10)
C30.2876 (5)0.3511 (4)−0.1214 (3)0.0471 (11)
C40.3017 (4)0.1895 (4)−0.1739 (3)0.0423 (10)
C50.2710 (4)0.0580 (4)−0.0934 (3)0.0416 (10)
C60.2210 (4)0.0869 (4)0.0432 (3)0.0361 (9)
C70.1935 (4)−0.0623 (4)0.1248 (3)0.0427 (10)
C80.1398 (6)−0.0343 (4)0.2718 (3)0.0493 (11)
C90.1564 (5)0.4465 (4)0.2950 (3)0.0465 (11)
C100.3622 (5)0.4137 (5)0.2925 (4)0.0635 (14)
H20.228720.491400.047270.0533*
H30.312140.43846−0.177240.0564*
H50.28342−0.05116−0.129830.0499*
H8A0.065 (5)−0.092 (5)0.313 (4)0.0591*
H8B0.247 (5)−0.063 (5)0.306 (3)0.0591*
H9A0.092 (5)0.550 (5)0.245 (3)0.0558*
H9B0.085 (5)0.457 (4)0.382 (3)0.0558*
H10A0.433440.411510.202850.0948*
H10B0.364030.509810.342780.0948*
H10C0.421090.298790.330100.0948*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0779 (3)0.0861 (3)0.0329 (2)−0.0249 (2)−0.0092 (2)0.0002 (2)
S10.0540 (5)0.0443 (4)0.0344 (4)−0.0260 (4)−0.0036 (3)0.0030 (3)
O10.113 (2)0.0401 (13)0.0672 (17)−0.0416 (15)−0.0168 (15)−0.0010 (12)
O20.0464 (14)0.0583 (14)0.0673 (16)−0.0232 (12)−0.0074 (12)0.0063 (12)
O30.098 (2)0.0734 (16)0.0341 (13)−0.0463 (15)−0.0033 (12)0.0009 (11)
N10.0626 (17)0.0467 (14)0.0332 (14)−0.0347 (14)−0.0012 (12)−0.0045 (11)
C10.0391 (16)0.0356 (15)0.0340 (16)−0.0178 (13)−0.0056 (12)−0.0001 (12)
C20.0552 (19)0.0351 (15)0.0453 (19)−0.0238 (15)−0.0057 (15)0.0010 (13)
C30.051 (2)0.0462 (18)0.0429 (19)−0.0212 (16)−0.0075 (15)0.0110 (15)
C40.0425 (18)0.0510 (18)0.0307 (16)−0.0164 (15)−0.0074 (13)0.0015 (14)
C50.0439 (18)0.0377 (16)0.0418 (18)−0.0139 (14)−0.0098 (14)−0.0056 (14)
C60.0419 (17)0.0324 (15)0.0369 (16)−0.0182 (13)−0.0082 (13)0.0005 (12)
C70.0487 (19)0.0354 (16)0.0491 (19)−0.0198 (14)−0.0158 (15)0.0050 (14)
C80.061 (2)0.0436 (18)0.047 (2)−0.0254 (18)−0.0137 (17)0.0121 (15)
C90.056 (2)0.0423 (17)0.0440 (19)−0.0255 (17)−0.0033 (16)−0.0115 (15)
C100.065 (2)0.066 (2)0.071 (3)−0.033 (2)−0.023 (2)−0.004 (2)

Geometric parameters (Å, °)

Br1—C41.893 (3)C6—C71.477 (4)
S1—O21.421 (3)C7—C81.496 (4)
S1—O31.420 (2)C9—C101.499 (6)
S1—N11.649 (3)C2—H20.9300
S1—C81.755 (3)C3—H30.9300
O1—C71.202 (4)C5—H50.9300
N1—C11.406 (4)C8—H8A0.89 (4)
N1—C91.481 (4)C8—H8B0.92 (4)
C1—C21.393 (4)C9—H9A0.98 (4)
C1—C61.409 (4)C9—H9B0.93 (3)
C2—C31.369 (4)C10—H10A0.9600
C3—C41.383 (4)C10—H10B0.9600
C4—C51.364 (4)C10—H10C0.9600
C5—C61.393 (4)
Br1···Br1i3.5704 (5)C2···H9A2.61 (3)
Br1···H8Bii3.00 (4)C2···H10A2.8500
O1···C2iii3.324 (4)C9···H22.5500
O2···C63.254 (4)C10···H22.9400
O2···C10iv3.263 (5)H2···O1ix2.4200
O2···C3v3.418 (4)H2···C92.5500
O3···C8vi3.252 (4)H2···C102.9400
O1···H9Aiii2.84 (4)H2···H9A2.0600
O1···H2iii2.4200H2···H10A2.4300
O1···H52.4700H3···O2v2.5900
O2···H10Civ2.9000H5···O12.4700
O2···H5vii2.7400H5···O2vii2.7400
O2···H3v2.5900H8A···O3vi2.57 (4)
O3···H9B2.29 (3)H8B···Br1ii3.00 (4)
O3···H8Avi2.57 (4)H9A···O1ix2.84 (4)
O3···H9Bviii2.90 (3)H9A···C22.61 (3)
C2···O1ix3.324 (4)H9A···H22.0600
C2···C103.348 (5)H9B···O32.29 (3)
C2···C2v3.472 (5)H9B···O3viii2.90 (3)
C3···O2v3.418 (4)H9B···H9Bviii2.49 (4)
C6···O23.254 (4)H10A···C12.9900
C8···O3vi3.252 (4)H10A···C22.8500
C10···C23.348 (5)H10A···H22.4300
C10···O2x3.263 (5)H10C···O2x2.9000
C1···H10A2.9900
O2—S1—O3118.87 (16)S1—C8—C7112.1 (2)
O2—S1—N1110.91 (14)N1—C9—C10111.6 (3)
O2—S1—C8106.97 (18)C1—C2—H2120.00
O3—S1—N1107.50 (16)C3—C2—H2120.00
O3—S1—C8111.51 (15)C2—C3—H3120.00
N1—S1—C899.36 (16)C4—C3—H3120.00
S1—N1—C1117.1 (2)C4—C5—H5120.00
S1—N1—C9118.39 (19)C6—C5—H5120.00
C1—N1—C9121.6 (2)S1—C8—H8A104 (2)
N1—C1—C2120.3 (3)S1—C8—H8B104 (2)
N1—C1—C6121.0 (3)C7—C8—H8A113 (3)
C2—C1—C6118.7 (3)C7—C8—H8B112 (2)
C1—C2—C3120.7 (3)H8A—C8—H8B111 (3)
C2—C3—C4120.1 (3)N1—C9—H9A104 (2)
Br1—C4—C3119.3 (2)N1—C9—H9B105 (2)
Br1—C4—C5120.0 (2)C10—C9—H9A115 (2)
C3—C4—C5120.7 (3)C10—C9—H9B110 (3)
C4—C5—C6120.1 (3)H9A—C9—H9B111 (3)
C1—C6—C5119.6 (3)C9—C10—H10A109.00
C1—C6—C7122.9 (3)C9—C10—H10B110.00
C5—C6—C7117.4 (3)C9—C10—H10C109.00
O1—C7—C6122.2 (3)H10A—C10—H10B109.00
O1—C7—C8119.4 (3)H10A—C10—H10C109.00
C6—C7—C8118.4 (3)H10B—C10—H10C109.00
O2—S1—N1—C1−56.8 (3)N1—C1—C6—C5178.0 (3)
O2—S1—N1—C9104.3 (2)N1—C1—C6—C7−2.4 (5)
O3—S1—N1—C1171.7 (2)C2—C1—C6—C5−2.6 (5)
O3—S1—N1—C9−27.2 (3)C2—C1—C6—C7177.1 (3)
C8—S1—N1—C155.5 (3)C1—C2—C3—C4−0.2 (6)
C8—S1—N1—C9−143.4 (3)C2—C3—C4—Br1177.9 (3)
O2—S1—C8—C761.0 (3)C2—C3—C4—C5−1.7 (6)
O3—S1—C8—C7−167.5 (3)Br1—C4—C5—C6−178.2 (3)
N1—S1—C8—C7−54.3 (3)C3—C4—C5—C61.3 (5)
S1—N1—C1—C2149.4 (3)C4—C5—C6—C10.8 (5)
S1—N1—C1—C6−31.2 (4)C4—C5—C6—C7−178.8 (3)
C9—N1—C1—C2−11.1 (5)C1—C6—C7—O1−178.0 (3)
C9—N1—C1—C6168.3 (3)C1—C6—C7—C80.4 (5)
S1—N1—C9—C10125.2 (3)C5—C6—C7—O11.7 (5)
C1—N1—C9—C10−74.6 (4)C5—C6—C7—C8180.0 (3)
N1—C1—C2—C3−178.3 (3)O1—C7—C8—S1−150.2 (3)
C6—C1—C2—C32.2 (5)C6—C7—C8—S131.4 (5)

Symmetry codes: (i) −x+1, −y, −z−1; (ii) −x+1, −y, −z; (iii) x, y−1, z; (iv) x−1, y, z; (v) −x, −y+1, −z; (vi) −x, −y, −z+1; (vii) −x, −y, −z; (viii) −x, −y+1, −z+1; (ix) x, y+1, z; (x) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O1ix0.93002.42003.324 (4)165.00
C3—H3···O2v0.93002.59003.418 (4)148.00
C8—H8A···O3vi0.89 (4)2.57 (4)3.252 (4)134 (3)
C9—H9B···O30.93 (3)2.29 (3)2.850 (4)118 (2)

Symmetry codes: (ix) x, y+1, z; (v) −x, −y+1, −z; (vi) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2711).

References

  • Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [PMC free article] [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc. Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Lombardino, J. G. (1972). J. Heterocycl. Chem.9, 315–317.
  • Shafiq, M., Khan, I. U., Tahir, M. N. & Siddiqui, W. A. (2008). Acta Cryst. E64, o558. [PMC free article] [PubMed]
  • Shafiq, M., Tahir, M. N., Khan, I. U., Ahmad, S. & Siddiqui, W. A. (2008). Acta Cryst. E64, o1270. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Tahir, M. N., Shafiq, M., Khan, I. U., Siddiqui, W. A. & Arshad, M. N. (2008). Acta Cryst. E64, o557. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography