PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o260.
Published online 2009 January 8. doi:  10.1107/S160053680900004X
PMCID: PMC2968241

1-(4-Chloro­phen­yl)-3-(2,4-dichloro­benzo­yl)thio­urea

Abstract

The title compound, C14H9Cl3N2OS, has bond lengths and angles which are quite typical for thio­urea compounds of this class. The mol­ecule exists in the solid state in its thione form with typical thio­urea C=S and C=O bond lengths, as well as shortened C—N bonds. An intra­molecular N—H(...)O hydrogen bond stabilizes the mol­ecular conformation. Inter­molecular N—H(...)S hydrogen bonds link the mol­ecules to form centrosymmetric dimers.

Related literature

For thio­urea derivatives with biological activities, see: Baily et al. (1996 [triangle]); Koch (2001 [triangle]); Maryanoff et al. (1986 [triangle]); Namgun et al. (2001 [triangle]); Patil & Chedekel (1984 [triangle]); Upadlgaya & Srivastava (1982 [triangle]); Wegner et al. (1986 [triangle]); Krishnamurthy et al. (1999 [triangle]). For related structures, see: Khawar Rauf et al. (2006a [triangle],b [triangle],c [triangle], 2007 [triangle]). For standard bond-length data, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o260-scheme1.jpg

Experimental

Crystal data

  • C14H9Cl3N2OS
  • M r = 359.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o260-efi1.jpg
  • a = 5.9674 (6) Å
  • b = 9.6577 (9) Å
  • c = 13.9585 (13) Å
  • α = 92.919 (6)°
  • β = 98.005 (7)°
  • γ = 101.330 (8)°
  • V = 778.54 (13) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.72 mm−1
  • T = 173 (2) K
  • 0.37 × 0.34 × 0.33 mm

Data collection

  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2003 [triangle]; Blessing, 1995 [triangle]) T min = 0.776, T max = 0.797
  • 10758 measured reflections
  • 3418 independent reflections
  • 3154 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.078
  • S = 1.02
  • 3418 reflections
  • 199 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900004X/rk2121sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900004X/rk2121Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MKR is grateful to the HEC, Pakistan, for financial support for a PhD programme under scholarship No. ILC-0363104.

supplementary crystallographic information

Comment

N-substituted and N,N'-disubstituted thiourea derivatives are very useful starting materials for the synthesis of a wide range of aliphatic macromolecular and heterocyclic compounds. Benzothiazoles have been prepared from arylthioureas in the presence of bromine (Patil & Chedekel, 1984) and condensation of thiourea with α-halocarbonyl compounds form 2-aminothiazoles (Baily et al., 1996). The 2-methyl-aminothiazolines have been synthesized by cyclization of N-(2-hydroxyethyl)-N'-methylthioureas (Namgun et al., 2001). Thioureas are efficient guanylating agents (Maryanoff et al., 1986). The N,N-dialkyl-N-aroylthioureas have been effectively used for the extraction of Ni, Pd and Pt metals (Koch, 2001). Aliphatic and acylthioureas are well known for their fungicidal, antiviral, pesticidal and plant-growth regulating activities (Upadlgaya & Srivastava, 1982; Wegner et al., 1986). Symmetrical and unsymmetrical thioureas have shown antifungal activity against the plant pathogens Pyricularia oryzae and Drechslera oryzae (Krishnamurthy et al., 1999). We are interested in the synthesis of these thioureas as intermediates in the synthesis of novel guanidines and heterocyclic compounds for the systematic study of bioactivity and complexation behaviour and we present here the crystal structure of the title compound. The title compound (Fig. 1) shows the typical thiourea C═S and C═O double bonds as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar, as reflected by the torsion angles C2—N1—C1—O1 = 9.0 (2)° and N2—C2—N1—C1 = 5.5 (2)°. This is associated with the expected typical thiourea intramolecular N—H···O hydrogen bond (Table). The dihedral angle formed by the two benzene ring planes is 9.35 (9)°. Bond lengths and angles can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database ver. 5.28 (Allen, 2002) and Khawar Rauf et al., 2006a,b,c, 2007. Intermolecular N—H···S hydrogen bonds (Table, Fig. 2), link the molecules to dimers. The Cl atoms are not involved in any type of hydrogen bonds.

Experimental

Freshly prepared 2,4-dichlorobenzoyl isothiocyanate (2.3 g, 10 mmol) was stirred in acetone (40 ml) for 20 min. Neat 4-chloroaniline (1.3 g, 10 mmol) was then added and the resulting mixture was stirred for 1.5 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol–1,1-dichloromethane (1:10 v/v) to give fine crystals of title compound, with an overall yield of 90%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement

H atoms were located in a difference map, but those bonded to C were refined with fixed individual displacement parameters Uiso(H) = 1.2Ueq(C) using a riding model with C—H = 0.95 Å. The H atoms bonded to N were refined freely.

Figures

Fig. 1.
Molecular structure of the title compound showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are drawn as a small spheres of arbitrary radius.
Fig. 2.
Packing diagram of the title compound with view onto the bc plane. Hydrogen bonds are shown as dashed lines.

Crystal data

C14H9Cl3N2OSZ = 2
Mr = 359.65F(000) = 364
Triclinic, P1Dx = 1.534 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9674 (6) ÅCell parameters from 8758 reflections
b = 9.6577 (9) Åθ = 3.7–27.1°
c = 13.9585 (13) ŵ = 0.72 mm1
α = 92.919 (6)°T = 173 K
β = 98.005 (7)°Block, colourless
γ = 101.330 (8)°0.37 × 0.34 × 0.33 mm
V = 778.54 (13) Å3

Data collection

Stoe IPDS II two-circle diffractometer3418 independent reflections
Radiation source: fine-focus sealed tube3154 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 27.1°, θmin = 3.5°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)h = −7→7
Tmin = 0.776, Tmax = 0.797k = −12→12
10758 measured reflectionsl = −16→17

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0411P)2 + 0.3093P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3418 reflectionsΔρmax = 0.35 e Å3
199 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (3)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.67492 (6)0.98619 (3)0.38939 (2)0.02427 (11)
Cl11.21954 (7)0.58845 (5)0.63698 (3)0.03934 (12)
Cl21.28238 (9)0.84274 (6)0.99473 (3)0.05304 (15)
Cl3−0.25621 (7)0.63336 (6)0.06553 (3)0.04618 (14)
O10.69489 (18)0.58953 (10)0.55419 (8)0.0271 (2)
N10.7744 (2)0.82647 (12)0.53113 (8)0.0217 (2)
H10.870 (3)0.901 (2)0.5518 (14)0.031 (5)*
N20.48353 (19)0.71427 (12)0.40789 (8)0.0214 (2)
H20.488 (3)0.644 (2)0.4369 (15)0.036 (5)*
C10.7879 (2)0.71114 (13)0.58426 (10)0.0198 (2)
C20.6359 (2)0.83297 (13)0.44250 (9)0.0194 (2)
C110.9208 (2)0.74977 (13)0.68462 (10)0.0211 (3)
C121.1140 (2)0.69336 (14)0.71709 (11)0.0253 (3)
C131.2283 (3)0.72390 (16)0.81191 (11)0.0319 (3)
H131.36140.68700.83310.038*
C141.1437 (3)0.80951 (17)0.87478 (11)0.0332 (3)
C150.9539 (3)0.86812 (18)0.84524 (12)0.0357 (3)
H150.89950.92690.88950.043*
C160.8441 (3)0.83931 (16)0.74932 (11)0.0294 (3)
H160.71620.88080.72770.035*
C210.3125 (2)0.70259 (13)0.32315 (9)0.0202 (3)
C220.1340 (2)0.77684 (15)0.32197 (11)0.0266 (3)
H220.13110.84050.37570.032*
C23−0.0402 (2)0.75754 (16)0.24188 (11)0.0290 (3)
H23−0.16160.80830.24010.035*
C24−0.0327 (2)0.66248 (16)0.16468 (10)0.0274 (3)
C250.1444 (3)0.58874 (16)0.16452 (10)0.0288 (3)
H250.14710.52530.11060.035*
C260.3185 (2)0.60921 (14)0.24475 (10)0.0246 (3)
H260.44110.55940.24590.030*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.02479 (18)0.01930 (16)0.02596 (18)−0.00011 (12)−0.00124 (13)0.00791 (12)
Cl10.0333 (2)0.0460 (2)0.0449 (2)0.02251 (17)0.00655 (16)0.00362 (17)
Cl20.0557 (3)0.0652 (3)0.0274 (2)−0.0014 (2)−0.01264 (18)0.00720 (19)
Cl30.0303 (2)0.0761 (3)0.0284 (2)0.01286 (19)−0.00926 (15)−0.00085 (19)
O10.0275 (5)0.0176 (4)0.0327 (5)0.0013 (4)−0.0038 (4)0.0041 (4)
N10.0221 (5)0.0163 (5)0.0228 (6)−0.0012 (4)−0.0029 (4)0.0031 (4)
N20.0222 (5)0.0169 (5)0.0227 (5)0.0015 (4)−0.0022 (4)0.0040 (4)
C10.0160 (6)0.0204 (6)0.0232 (6)0.0038 (4)0.0026 (5)0.0045 (5)
C20.0186 (6)0.0194 (6)0.0199 (6)0.0037 (4)0.0015 (5)0.0021 (4)
C110.0196 (6)0.0194 (6)0.0231 (6)0.0015 (4)0.0014 (5)0.0058 (5)
C120.0209 (6)0.0251 (6)0.0299 (7)0.0046 (5)0.0026 (5)0.0080 (5)
C130.0233 (7)0.0353 (8)0.0351 (8)0.0031 (6)−0.0031 (6)0.0145 (6)
C140.0335 (8)0.0365 (8)0.0232 (7)−0.0036 (6)−0.0039 (6)0.0085 (6)
C150.0420 (9)0.0382 (8)0.0263 (7)0.0090 (7)0.0032 (6)0.0003 (6)
C160.0299 (7)0.0315 (7)0.0277 (7)0.0105 (6)0.0013 (6)0.0028 (6)
C210.0189 (6)0.0185 (6)0.0209 (6)0.0002 (4)−0.0002 (5)0.0045 (5)
C220.0251 (7)0.0249 (6)0.0289 (7)0.0066 (5)0.0006 (5)−0.0020 (5)
C230.0217 (6)0.0325 (7)0.0330 (7)0.0092 (5)−0.0001 (6)0.0028 (6)
C240.0216 (6)0.0364 (7)0.0217 (6)0.0025 (5)−0.0014 (5)0.0051 (5)
C250.0298 (7)0.0346 (7)0.0211 (6)0.0066 (6)0.0022 (5)−0.0014 (5)
C260.0232 (6)0.0265 (6)0.0246 (7)0.0073 (5)0.0020 (5)0.0029 (5)

Geometric parameters (Å, °)

S1—C21.6786 (13)C13—H130.9500
Cl1—C121.7336 (15)C14—C151.385 (2)
Cl2—C141.7454 (16)C15—C161.395 (2)
Cl3—C241.7529 (14)C15—H150.9500
O1—C11.2217 (16)C16—H160.9500
N1—C11.3784 (16)C21—C261.3912 (19)
N1—C21.4003 (17)C21—C221.3947 (19)
N1—H10.84 (2)C22—C231.394 (2)
N2—C21.3365 (17)C22—H220.9500
N2—C211.4348 (16)C23—C241.391 (2)
N2—H20.81 (2)C23—H230.9500
C1—C111.5004 (18)C24—C251.385 (2)
C11—C121.3993 (19)C25—C261.395 (2)
C11—C161.401 (2)C25—H250.9500
C12—C131.391 (2)C26—H260.9500
C13—C141.387 (2)
C1—N1—C2128.79 (11)C14—C15—C16118.83 (15)
C1—N1—H1115.9 (13)C14—C15—H15120.6
C2—N1—H1115.1 (13)C16—C15—H15120.6
C2—N2—C21124.59 (11)C15—C16—C11120.59 (14)
C2—N2—H2117.6 (14)C15—C16—H16119.7
C21—N2—H2117.8 (14)C11—C16—H16119.7
O1—C1—N1123.60 (12)C26—C21—C22120.47 (12)
O1—C1—C11122.92 (12)C26—C21—N2119.04 (12)
N1—C1—C11113.44 (11)C22—C21—N2120.35 (12)
N2—C2—N1115.97 (11)C23—C22—C21119.97 (13)
N2—C2—S1125.98 (10)C23—C22—H22120.0
N1—C2—S1118.06 (9)C21—C22—H22120.0
C12—C11—C16118.82 (13)C24—C23—C22118.73 (13)
C12—C11—C1121.64 (12)C24—C23—H23120.6
C16—C11—C1119.48 (12)C22—C23—H23120.6
C13—C12—C11121.15 (14)C25—C24—C23121.94 (13)
C13—C12—Cl1119.15 (11)C25—C24—Cl3119.11 (11)
C11—C12—Cl1119.66 (11)C23—C24—Cl3118.95 (11)
C14—C13—C12118.49 (14)C24—C25—C26118.95 (13)
C14—C13—H13120.8C24—C25—H25120.5
C12—C13—H13120.8C26—C25—H25120.5
C15—C14—C13122.07 (14)C21—C26—C25119.93 (13)
C15—C14—Cl2119.67 (13)C21—C26—H26120.0
C13—C14—Cl2118.26 (12)C25—C26—H26120.0
C2—N1—C1—O19.0 (2)C13—C14—C15—C160.3 (2)
C2—N1—C1—C11−168.72 (12)Cl2—C14—C15—C16−179.43 (12)
C21—N2—C2—N1174.17 (12)C14—C15—C16—C111.6 (2)
C21—N2—C2—S1−6.02 (19)C12—C11—C16—C15−2.0 (2)
C1—N1—C2—N25.5 (2)C1—C11—C16—C15175.05 (13)
C1—N1—C2—S1−174.29 (11)C2—N2—C21—C26118.68 (15)
O1—C1—C11—C1259.43 (18)C2—N2—C21—C22−65.50 (18)
N1—C1—C11—C12−122.82 (13)C26—C21—C22—C230.1 (2)
O1—C1—C11—C16−117.54 (15)N2—C21—C22—C23−175.68 (13)
N1—C1—C11—C1660.22 (16)C21—C22—C23—C240.7 (2)
C16—C11—C12—C130.5 (2)C22—C23—C24—C25−1.1 (2)
C1—C11—C12—C13−176.50 (12)C22—C23—C24—Cl3177.91 (11)
C16—C11—C12—Cl1−177.26 (11)C23—C24—C25—C260.8 (2)
C1—C11—C12—Cl15.75 (17)Cl3—C24—C25—C26−178.21 (11)
C11—C12—C13—C141.4 (2)C22—C21—C26—C25−0.4 (2)
Cl1—C12—C13—C14179.14 (11)N2—C21—C26—C25175.42 (12)
C12—C13—C14—C15−1.8 (2)C24—C25—C26—C21−0.1 (2)
C12—C13—C14—Cl2177.96 (11)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.84 (2)2.71 (2)3.4273 (12)144.3 (16)
N2—H2···O10.81 (2)2.06 (2)2.7098 (16)136.4 (19)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2121).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Baily, N., Dean, A. W., Judd, D. B., Middlemiss, D., Storer, R. & Watson, S. P. (1996). Bioorg. Med. Chem. Lett.6, 1409–1413.
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o4296–o4298.
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.
  • Khawar Rauf, M., Badshah, A., Bolte, M. & Ahmad, I. (2007). Acta Cryst. E63, o1155–o1157.
  • Koch, K. R. (2001). Coord. Chem. Rev.216, 473–482.
  • Krishnamurthy, R., Govindaraghavan, S. & Narayanasamy, J. (1999). Pestic. Sci.52, 145–151.
  • Maryanoff, C. A., Stanzione, R. C., Plampin, J. N. & Mills, J. E. (1986). J. Org. Chem.51, 1882–1884.
  • Namgun, L., Mi-Hyun, C. & Taek, H. K. (2001). J. Korean Chem. Soc.45, 96–99.
  • Patil, D. G. & Chedekel, M. R. (1984). J. Org. Chem.49, 997–1000.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.
  • Upadlgaya, J. S. & Srivastava, P. K. (1982). J. Indian Chem. Soc.59, 767–769.
  • Wegner, P., Hans, R., Frank, H. & Joppien, H. (1986). Eur. Patent 190611.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography