PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o271.
Published online 2009 January 10. doi:  10.1107/S1600536808043882
PMCID: PMC2968240

10-[2-(Dimethyl­amino)eth­yl]-9-(4-methoxy­phen­yl)-3,3,6,6-tetra­methyl-3,4,6,7,9,10-hexa­hydro­acridine-1,8(2H,5H)-dione

Abstract

In the title compound, C28H38N2O3, the central ring of the acridinedione system adopts a boat conformation, while one of the outer rings adopts a half-chair conformation and the conformation of the other outer ring is between a sofa and a half-chair. The acridinedione system is buckled, with an angle of 22.01 (3)°. The crystal packing comprises layers of mol­ecules laid parallel to the ac plane, being reinforced by an intermolecular C—H(...)O interaction.

Related literature

For related literature, see: Josephrajan et al. (2005 [triangle]); Murugan et al. (1998 [triangle]); Srividya et al. (1996 [triangle], 1998 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o271-scheme1.jpg

Experimental

Crystal data

  • C28H38N2O3
  • M r = 450.60
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o271-efi1.jpg
  • a = 10.3030 (13) Å
  • b = 19.299 (3) Å
  • c = 13.3961 (18) Å
  • β = 103.336 (4)°
  • V = 2591.8 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 295 (2) K
  • 0.56 × 0.16 × 0.10 mm

Data collection

  • Bruker KappaAPEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.95, T max = 0.99
  • 17538 measured reflections
  • 5944 independent reflections
  • 3567 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.162
  • S = 1.01
  • 5944 reflections
  • 298 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: APEX2 and SAINT (Bruker, 2004 [triangle]); data reduction: SAINT and XPREP (Bruker, 2004 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808043882/tk2350sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043882/tk2350Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor P. Ramamurthy, National Centre for Ultrafast Processes, University of Madras, Taramani Campus, Chennai 600 113, India, for his help during the preparation of the sample.

supplementary crystallographic information

Comment

Acridines, the earliest known antibiotics, are toxic towards bacteria. Some acridinedione derivatives show good inhibition against the pathogen Vibrio isolate-I (Josephrajan et al., 2005). Certain acridine-1,8-diones exhibit fluorescence activities (Murugan et al., 1998) and a few acridinedione derivatives also show photophysical (Srividya et al., 1998) and electrochemical properties (Srividya et al., 1996). Thus, the accurate description of crystal structures of substituted acridinediones are expected to provide useful information on the role of substituents in influencing molecular conformation which has a direct relationship to biological activity. This paper deals with the precise description of a 4-methoxyphenyl substituted tetramethyl acridinedione, (I).

The planar phenyl ring of the substituent moiety at C9 is perpendicular to the acridinedione moiety forming a dihedral angle of 88.21 (6)°, Fig. 1. The dimethylaminoethyl group is also oriented 80.0 (1)° to the acridinedione plane. The substitutuents at the C9 and N1 positions are cis oriented with respect to the acridinedione moiety and project opposite to the fold in the acridinedione moiety. The central ring of the acridinedione moiety adopts a boat conformation (ΔCs (N1) = 0.028 (1)° & ΔCs (C6—C1) = 0.057 (1)°). One of the outer rings (C1—C6) adopts a half-chair conformation (ΔC2 (C1—C6) = 0.045 (1)°) and that of the other outer ring (C10—C15) ring is between a sofa and half chair conformation (ΔCs (C10) = 0.066 (1)° & ΔC2 (C10—C15) = 0.061 (1)°) (Nardelli, 1983). The crystal packing consists of layers of molecules laid parallel to the ac-plane. Only one of the two keto-O atoms participates in a C—H···O contact, Table 1.

Experimental

Light-yellow crystals were obtained by recrystallization from an ethanol solution of (I).

Refinement

H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C – H distances in the range 0.93 – 0.98 Å, and with Uiso(H) = 1.2 or 1.5 (for methyl-H) times Ueq(C).

Figures

Fig. 1.
The molecular structure of (I), showing 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Crystal data

C28H38N2O3F(000) = 976
Mr = 450.60Dx = 1.155 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2202 reflections
a = 10.3030 (13) Åθ = 1.9–27.5°
b = 19.299 (3) ŵ = 0.07 mm1
c = 13.3961 (18) ÅT = 295 K
β = 103.336 (4)°Slab, light yellow
V = 2591.8 (6) Å30.56 × 0.16 × 0.10 mm
Z = 4

Data collection

Bruker KappaAPEXII CCD diffractometer5944 independent reflections
Radiation source: fine-focus sealed tube3567 reflections with I > 2σ(I)
graphiteRint = 0.041
ω and [var phi] scansθmax = 27.6°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −9→13
Tmin = 0.95, Tmax = 0.99k = −23→25
17538 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0679P)2 + 0.3097P] where P = (Fo2 + 2Fc2)/3
5944 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.88988 (15)0.24189 (8)0.17052 (12)0.0631 (5)
O20.50984 (16)0.38481 (8)0.19363 (11)0.0601 (4)
O30.32638 (16)0.06075 (9)0.00092 (12)0.0715 (5)
N10.69322 (16)0.22382 (8)0.45422 (12)0.0417 (4)
N20.5859 (2)0.10112 (10)0.63649 (14)0.0637 (5)
C10.78666 (19)0.20226 (10)0.39984 (15)0.0410 (5)
C20.8942 (2)0.15337 (11)0.45263 (16)0.0528 (6)
H2A0.85340.11550.48190.063*
H2B0.95300.17770.50870.063*
C30.9777 (2)0.12330 (13)0.38223 (18)0.0655 (7)
C41.0128 (2)0.18105 (14)0.31611 (18)0.0680 (7)
H4A1.07040.21410.35970.082*
H4B1.06210.16170.26910.082*
C50.8921 (2)0.21803 (11)0.25587 (17)0.0486 (5)
C60.78033 (19)0.22640 (10)0.30388 (14)0.0404 (5)
C71.1063 (3)0.0932 (2)0.4501 (2)0.1156 (13)
H7A1.16040.07390.40750.173*
H7B1.08400.05760.49330.173*
H7C1.15490.12940.49200.173*
C80.8996 (3)0.06640 (14)0.3143 (2)0.0950 (10)
H8A0.95270.04810.27020.143*
H8B0.81860.08540.27340.143*
H8C0.87860.02990.35670.143*
C90.65777 (19)0.26291 (9)0.24426 (14)0.0394 (5)
H90.68590.29670.19880.047*
C100.59692 (19)0.30198 (10)0.31887 (14)0.0384 (4)
C110.5246 (2)0.36554 (10)0.28247 (15)0.0436 (5)
C120.4725 (2)0.40739 (11)0.35877 (16)0.0549 (6)
H12A0.39880.43580.32270.066*
H12B0.54220.43820.39460.066*
C130.4252 (2)0.36234 (11)0.43689 (16)0.0506 (5)
C140.5418 (2)0.31647 (10)0.48961 (15)0.0470 (5)
H14A0.60680.34490.53590.056*
H14B0.50930.28200.53060.056*
C150.61041 (19)0.27989 (9)0.41677 (14)0.0389 (4)
C160.3845 (3)0.40841 (12)0.51759 (19)0.0737 (8)
H16A0.35420.37990.56640.111*
H16B0.31400.43890.48470.111*
H16C0.45990.43530.55240.111*
C170.3062 (2)0.31810 (13)0.3845 (2)0.0692 (7)
H17A0.33130.28890.33410.104*
H17B0.23400.34770.35160.104*
H17C0.27830.28990.43470.104*
C180.6893 (2)0.19211 (11)0.55353 (15)0.0484 (5)
H18A0.67700.22800.60110.058*
H18B0.77370.16930.58180.058*
C190.5771 (2)0.13980 (12)0.54196 (17)0.0599 (6)
H19A0.49210.16370.52390.072*
H19B0.58150.10790.48690.072*
C200.4552 (3)0.08163 (17)0.6512 (2)0.1008 (11)
H20A0.46540.05650.71440.151*
H20B0.41080.05290.59520.151*
H20C0.40320.12260.65370.151*
C210.6703 (3)0.04104 (14)0.6416 (2)0.0922 (9)
H21A0.67590.01750.70560.138*
H21B0.75790.05530.63660.138*
H21C0.63340.01030.58590.138*
C220.56405 (19)0.21121 (9)0.17768 (14)0.0389 (4)
C230.5755 (2)0.19818 (11)0.07903 (15)0.0497 (5)
H230.63750.22320.05310.060*
C240.4982 (2)0.14919 (11)0.01715 (16)0.0544 (6)
H240.50800.1420−0.04940.065*
C250.4071 (2)0.11125 (11)0.05418 (16)0.0495 (5)
C260.3929 (2)0.12379 (12)0.15253 (17)0.0595 (6)
H260.33060.09880.17820.071*
C270.4700 (2)0.17284 (11)0.21265 (16)0.0529 (6)
H270.45890.18050.27870.063*
C280.3427 (3)0.04469 (14)−0.09916 (19)0.0768 (8)
H28A0.28120.0088−0.12860.115*
H28B0.43230.0291−0.09490.115*
H28C0.32560.0853−0.14150.115*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0671 (11)0.0764 (11)0.0546 (10)−0.0024 (8)0.0320 (8)0.0013 (8)
O20.0815 (12)0.0558 (9)0.0444 (9)0.0103 (8)0.0171 (8)0.0126 (7)
O30.0749 (11)0.0787 (12)0.0624 (11)−0.0261 (9)0.0192 (9)−0.0271 (9)
N10.0492 (10)0.0449 (9)0.0323 (8)0.0027 (8)0.0120 (8)0.0030 (7)
N20.0791 (14)0.0595 (12)0.0561 (12)−0.0048 (10)0.0231 (11)0.0131 (10)
C10.0421 (11)0.0415 (11)0.0379 (11)−0.0038 (8)0.0065 (9)−0.0051 (9)
C20.0551 (14)0.0569 (13)0.0424 (12)0.0084 (11)0.0031 (10)−0.0024 (10)
C30.0672 (16)0.0759 (17)0.0521 (14)0.0281 (13)0.0111 (12)−0.0006 (13)
C40.0499 (14)0.097 (2)0.0589 (15)0.0114 (13)0.0163 (12)−0.0108 (14)
C50.0497 (13)0.0510 (13)0.0477 (13)−0.0080 (10)0.0167 (10)−0.0124 (10)
C60.0443 (11)0.0391 (11)0.0388 (11)−0.0044 (8)0.0115 (9)−0.0060 (8)
C70.099 (2)0.165 (3)0.084 (2)0.078 (2)0.0213 (19)0.014 (2)
C80.152 (3)0.0593 (17)0.0743 (19)0.0223 (18)0.027 (2)−0.0124 (15)
C90.0482 (12)0.0392 (10)0.0335 (10)−0.0023 (9)0.0147 (9)0.0032 (8)
C100.0462 (11)0.0364 (10)0.0339 (10)−0.0032 (8)0.0117 (9)−0.0009 (8)
C110.0496 (12)0.0409 (11)0.0407 (11)−0.0041 (9)0.0115 (10)0.0018 (9)
C120.0716 (15)0.0449 (12)0.0517 (13)0.0103 (11)0.0212 (12)0.0036 (10)
C130.0637 (14)0.0461 (12)0.0474 (12)0.0084 (10)0.0238 (11)−0.0018 (10)
C140.0610 (14)0.0462 (12)0.0366 (11)−0.0033 (10)0.0172 (10)−0.0052 (9)
C150.0426 (11)0.0368 (11)0.0381 (11)−0.0044 (8)0.0110 (9)−0.0015 (8)
C160.105 (2)0.0610 (15)0.0668 (17)0.0224 (14)0.0435 (16)0.0001 (13)
C170.0590 (16)0.0802 (18)0.0734 (17)−0.0012 (13)0.0257 (13)−0.0027 (14)
C180.0582 (13)0.0523 (13)0.0350 (11)0.0042 (10)0.0116 (10)0.0080 (9)
C190.0642 (15)0.0624 (15)0.0540 (14)−0.0022 (12)0.0153 (12)0.0129 (11)
C200.109 (2)0.103 (2)0.111 (3)−0.0014 (19)0.066 (2)0.021 (2)
C210.094 (2)0.077 (2)0.102 (2)0.0129 (17)0.0145 (18)0.0305 (17)
C220.0430 (11)0.0408 (11)0.0327 (10)0.0047 (8)0.0081 (9)0.0014 (8)
C230.0547 (13)0.0582 (13)0.0395 (12)−0.0091 (10)0.0175 (10)−0.0032 (10)
C240.0597 (14)0.0679 (15)0.0378 (12)−0.0049 (12)0.0156 (11)−0.0132 (11)
C250.0496 (13)0.0505 (12)0.0465 (12)−0.0045 (10)0.0073 (10)−0.0083 (10)
C260.0674 (16)0.0640 (15)0.0511 (13)−0.0199 (12)0.0221 (12)−0.0038 (11)
C270.0676 (15)0.0588 (14)0.0356 (11)−0.0114 (11)0.0189 (11)−0.0028 (10)
C280.0816 (19)0.0837 (19)0.0629 (16)−0.0160 (15)0.0124 (14)−0.0311 (14)

Geometric parameters (Å, °)

O1—C51.228 (2)C12—H12B0.9700
O2—C111.222 (2)C13—C171.526 (3)
O3—C251.370 (2)C13—C141.528 (3)
O3—C281.423 (3)C13—C161.531 (3)
N1—C151.398 (2)C14—C151.506 (2)
N1—C11.398 (2)C14—H14A0.9700
N1—C181.473 (2)C14—H14B0.9700
N2—C211.442 (3)C16—H16A0.9600
N2—C201.454 (3)C16—H16B0.9600
N2—C191.455 (3)C16—H16C0.9600
C1—C61.355 (3)C17—H17A0.9600
C1—C21.502 (3)C17—H17B0.9600
C2—C31.529 (3)C17—H17C0.9600
C2—H2A0.9700C18—C191.515 (3)
C2—H2B0.9700C18—H18A0.9700
C3—C41.518 (3)C18—H18B0.9700
C3—C81.531 (4)C19—H19A0.9700
C3—C71.538 (3)C19—H19B0.9700
C4—C51.498 (3)C20—H20A0.9600
C4—H4A0.9700C20—H20B0.9600
C4—H4B0.9700C20—H20C0.9600
C5—C61.452 (3)C21—H21A0.9600
C6—C91.505 (3)C21—H21B0.9600
C7—H7A0.9600C21—H21C0.9600
C7—H7B0.9600C22—C231.377 (2)
C7—H7C0.9600C22—C271.384 (3)
C8—H8A0.9600C23—C241.382 (3)
C8—H8B0.9600C23—H230.9300
C8—H8C0.9600C24—C251.370 (3)
C9—C101.500 (2)C24—H240.9300
C9—C221.525 (3)C25—C261.380 (3)
C9—H90.9800C26—C271.372 (3)
C10—C151.355 (2)C26—H260.9300
C10—C111.459 (3)C27—H270.9300
C11—C121.496 (3)C28—H28A0.9600
C12—C131.524 (3)C28—H28B0.9600
C12—H12A0.9700C28—H28C0.9600
C25—O3—C28117.13 (18)C15—C14—C13114.11 (16)
C15—N1—C1118.69 (15)C15—C14—H14A108.7
C15—N1—C18120.27 (15)C13—C14—H14A108.7
C1—N1—C18120.84 (16)C15—C14—H14B108.7
C21—N2—C20110.7 (2)C13—C14—H14B108.7
C21—N2—C19111.7 (2)H14A—C14—H14B107.6
C20—N2—C19112.2 (2)C10—C15—N1120.58 (16)
C6—C1—N1120.26 (18)C10—C15—C14121.39 (17)
C6—C1—C2122.10 (17)N1—C15—C14117.98 (16)
N1—C1—C2117.62 (16)C13—C16—H16A109.5
C1—C2—C3114.00 (17)C13—C16—H16B109.5
C1—C2—H2A108.8H16A—C16—H16B109.5
C3—C2—H2A108.8C13—C16—H16C109.5
C1—C2—H2B108.8H16A—C16—H16C109.5
C3—C2—H2B108.8H16B—C16—H16C109.5
H2A—C2—H2B107.6C13—C17—H17A109.5
C4—C3—C2108.96 (19)C13—C17—H17B109.5
C4—C3—C8110.1 (2)H17A—C17—H17B109.5
C2—C3—C8110.2 (2)C13—C17—H17C109.5
C4—C3—C7109.5 (2)H17A—C17—H17C109.5
C2—C3—C7107.98 (19)H17B—C17—H17C109.5
C8—C3—C7110.1 (2)N1—C18—C19111.32 (17)
C5—C4—C3112.6 (2)N1—C18—H18A109.4
C5—C4—H4A109.1C19—C18—H18A109.4
C3—C4—H4A109.1N1—C18—H18B109.4
C5—C4—H4B109.1C19—C18—H18B109.4
C3—C4—H4B109.1H18A—C18—H18B108.0
H4A—C4—H4B107.8N2—C19—C18111.11 (18)
O1—C5—C6121.6 (2)N2—C19—H19A109.4
O1—C5—C4121.02 (19)C18—C19—H19A109.4
C6—C5—C4117.34 (19)N2—C19—H19B109.4
C1—C6—C5120.83 (19)C18—C19—H19B109.4
C1—C6—C9121.04 (17)H19A—C19—H19B108.0
C5—C6—C9118.13 (17)N2—C20—H20A109.5
C3—C7—H7A109.5N2—C20—H20B109.5
C3—C7—H7B109.5H20A—C20—H20B109.5
H7A—C7—H7B109.5N2—C20—H20C109.5
C3—C7—H7C109.5H20A—C20—H20C109.5
H7A—C7—H7C109.5H20B—C20—H20C109.5
H7B—C7—H7C109.5N2—C21—H21A109.5
C3—C8—H8A109.5N2—C21—H21B109.5
C3—C8—H8B109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5N2—C21—H21C109.5
C3—C8—H8C109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5C23—C22—C27116.67 (18)
C10—C9—C6108.08 (15)C23—C22—C9119.86 (17)
C10—C9—C22114.40 (15)C27—C22—C9123.38 (16)
C6—C9—C22110.16 (15)C22—C23—C24122.36 (19)
C10—C9—H9108.0C22—C23—H23118.8
C6—C9—H9108.0C24—C23—H23118.8
C22—C9—H9108.0C25—C24—C23119.76 (19)
C15—C10—C11121.21 (17)C25—C24—H24120.1
C15—C10—C9121.43 (17)C23—C24—H24120.1
C11—C10—C9117.35 (16)O3—C25—C24125.15 (19)
O2—C11—C10121.36 (17)O3—C25—C26115.88 (19)
O2—C11—C12121.14 (18)C24—C25—C26119.0 (2)
C10—C11—C12117.48 (17)C27—C26—C25120.4 (2)
C11—C12—C13112.51 (17)C27—C26—H26119.8
C11—C12—H12A109.1C25—C26—H26119.8
C13—C12—H12A109.1C26—C27—C22121.77 (19)
C11—C12—H12B109.1C26—C27—H27119.1
C13—C12—H12B109.1C22—C27—H27119.1
H12A—C12—H12B107.8O3—C28—H28A109.5
C12—C13—C17110.69 (19)O3—C28—H28B109.5
C12—C13—C14107.84 (17)H28A—C28—H28B109.5
C17—C13—C14110.58 (18)O3—C28—H28C109.5
C12—C13—C16109.66 (17)H28A—C28—H28C109.5
C17—C13—C16109.12 (19)H28B—C28—H28C109.5
C14—C13—C16108.92 (18)
C15—N1—C1—C6−12.1 (3)C11—C12—C13—C1456.7 (2)
C18—N1—C1—C6172.94 (18)C11—C12—C13—C16175.2 (2)
C15—N1—C1—C2166.47 (18)C12—C13—C14—C15−48.6 (2)
C18—N1—C1—C2−8.4 (3)C17—C13—C14—C1572.5 (2)
C6—C1—C2—C3−10.9 (3)C16—C13—C14—C15−167.55 (18)
N1—C1—C2—C3170.49 (18)C11—C10—C15—N1−172.16 (17)
C1—C2—C3—C444.3 (3)C9—C10—C15—N16.7 (3)
C1—C2—C3—C8−76.6 (3)C11—C10—C15—C145.2 (3)
C1—C2—C3—C7163.1 (2)C9—C10—C15—C14−175.93 (17)
C2—C3—C4—C5−56.0 (3)C1—N1—C15—C1016.1 (3)
C8—C3—C4—C564.9 (3)C18—N1—C15—C10−168.99 (18)
C7—C3—C4—C5−173.9 (2)C1—N1—C15—C14−161.44 (16)
C3—C4—C5—O1−147.1 (2)C18—N1—C15—C1413.5 (3)
C3—C4—C5—C634.8 (3)C13—C14—C15—C1019.1 (3)
N1—C1—C6—C5165.40 (17)C13—C14—C15—N1−163.47 (17)
C2—C1—C6—C5−13.2 (3)C15—N1—C18—C1983.4 (2)
N1—C1—C6—C9−14.3 (3)C1—N1—C18—C19−101.7 (2)
C2—C1—C6—C9167.16 (17)C21—N2—C19—C18−87.4 (2)
O1—C5—C6—C1−177.22 (19)C20—N2—C19—C18147.7 (2)
C4—C5—C6—C10.8 (3)N1—C18—C19—N2171.31 (17)
O1—C5—C6—C92.5 (3)C10—C9—C22—C23147.68 (18)
C4—C5—C6—C9−179.53 (18)C6—C9—C22—C23−90.4 (2)
C1—C6—C9—C1033.0 (2)C10—C9—C22—C27−35.8 (3)
C5—C6—C9—C10−146.74 (17)C6—C9—C22—C2786.2 (2)
C1—C6—C9—C22−92.7 (2)C27—C22—C23—C24−0.3 (3)
C5—C6—C9—C2287.62 (19)C9—C22—C23—C24176.46 (19)
C6—C9—C10—C15−29.1 (2)C22—C23—C24—C25−0.6 (3)
C22—C9—C10—C1594.0 (2)C28—O3—C25—C242.7 (3)
C6—C9—C10—C11149.79 (16)C28—O3—C25—C26−177.5 (2)
C22—C9—C10—C11−87.1 (2)C23—C24—C25—O3−179.0 (2)
C15—C10—C11—O2−178.41 (19)C23—C24—C25—C261.2 (3)
C9—C10—C11—O22.7 (3)O3—C25—C26—C27179.3 (2)
C15—C10—C11—C123.3 (3)C24—C25—C26—C27−0.8 (4)
C9—C10—C11—C12−175.59 (17)C25—C26—C27—C22−0.1 (4)
O2—C11—C12—C13146.1 (2)C23—C22—C27—C260.6 (3)
C10—C11—C12—C13−35.6 (3)C9—C22—C27—C26−176.0 (2)
C11—C12—C13—C17−64.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C14—H14B···O1i0.972.513.368 (2)147

Symmetry codes: (i) x−1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2350).

References

  • Bruker (2004). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Josephrajan, T., Ramakrishnan, V. T., Kathiravan, G. & Muthumary, J. (2005). ARKIVOC, pp. 124–136.
  • Murugan, P., Shanmugasundaram, P., Ramakrishnan, V. T., Venkatachalapathy, B., Srividya, N., Ramamurthy, P., Gunasekaran, K. & Velmurugan, D. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 999–1003.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Srividya, N., Ramamurthy, P. & Ramakrishnan, V. T. (1998). Spectrochim. Acta Part A, 54, 245–253.
  • Srividya, N., Ramamurthy, P., Shanmugasundaram, P. & Ramakrishnan, V. T. (1996). J. Org. Chem.61, 5083–5089.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography