PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o368.
Published online 2009 January 23. doi:  10.1107/S160053680900230X
PMCID: PMC2968236

2-Ethyl-6-methyl­anilinium 4-methyl­benzene­sulfonate

Abstract

The title compound, C9H14N+·C7H7SO3 , contains a 2-ethyl-6-methyl­anilinium cation and a 4-methyl­benzene­sulfonic anion. The cations are anchored between the anions through N—H(...)O hydrogen bonds. Electrostatic and van der Waals inter­actions, as well as hydrogen bonds, maintain the structural cohesion.

Related literature

For related structures, see: Benali-Cherif et al. (2007 [triangle]); Benslimane et al. (2007 [triangle]); Elmali et al. (2001 [triangle]); Fábry et al. (2001 [triangle], 2002 [triangle]); Khemiri et al. (2008 [triangle]); Muthamizhchelvan et al. (2005 [triangle]); Smirani et al. (2008 [triangle]); Smirani & Rzaigui (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o368-scheme1.jpg

Experimental

Crystal data

  • C9H14N+·C7H7O3S
  • M r = 307.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o368-efi1.jpg
  • a = 15.2514 (9) Å
  • b = 6.1889 (4) Å
  • c = 16.9242 (10) Å
  • β = 102.850 (1)°
  • V = 1557.46 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 173 (2) K
  • 0.45 × 0.34 × 0.27 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004 [triangle]) T min = 0.904, T max = 0.944
  • 7882 measured reflections
  • 3354 independent reflections
  • 2555 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.109
  • S = 1.08
  • 3354 reflections
  • 194 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.34 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT-Plus (Bruker, 2003 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900230X/pv2133sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900230X/pv2133Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their thanks to the National Key Technology Research and Development Programme (grant No. 2006BAE01A01-4).

supplementary crystallographic information

Comment

In the title compound, the proton of the sulfonic group of sulfonic acid has been transferred to the N atom of the 2-ethyl-6-methylaniline molecule, leading to the formation of the molecular complex, (I). In this article we present the crystal structure of the title compound. The removal of the sulfonic acid H atom leads to a shortening of the C10—S1 bond length, showing a partial double-bond character. This behaviour is similar to that observed in many picrate salts (Muthamizhchelvan et al. 2005); it is attributed to the loss of the hydroxyl proton, leading to the conversion of the neutral to an anionic state of the molecule.

In the structure (Fig. 1), intermolecular hydrogen bonds are observed, with the N atom of the cation acting as donors. The orientation of the anion and cation facilitates the formation of the expected strong N—H···O hydrogen bonds between amino atom N1 and the sulfonic O atoms; N1 hydrogen bonds to two sulfonic O atoms of adjacent molecules (Fig. 2 and Table 1). These hydrogen bonds are effective in the stabilization of the structure. The crystal structures of several related compounds have been published, e.g. Muthamizhchelvan et al. (2008); Benslimane et al. (2007); Smirani & Rzaigui (2009); Fábry et al. (2001, 2002); Khemiri et al. (2008); Benali-Cherif et al. (2007); Elmali et al. (2001).

Experimental

Added 2-ethyl-6-methylaniline (1.35 g) into a solution of 4-methylbenzenesulfonic acid (1.72 g) and ethanol (10 ml). After 10 min precipitate were formed which were filtered and dried, giving the desired product. Crystals suitable for X-ray structure determination were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement

The methyl H atom were positioned geometrically (C—H = 0.98 Å) and torsion angles refined to fit the electron density [Uiso(H) = 1.5Ueq(C)]. Other H atoms were placed at calculated positions (methylene C—H = 0.95 Å and aromatic C—H = 0.95 Å) and included in the refinement in a riding mode with [Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
Molecular structure of the title compound showing 30% probability displacement ellipsoids.
Fig. 2.
Unit cell packing diagram of (I) showing intermolecular hydrogen bonds; H atoms have been omitted for clarity.

Crystal data

C9H14N+·C7H7O3SF(000) = 656
Mr = 307.40Dx = 1.311 Mg m3
Monoclinic, P21/nMelting point: 428 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 15.2514 (9) ÅCell parameters from 3656 reflections
b = 6.1889 (4) Åθ = 2.5–27.0°
c = 16.9242 (10) ŵ = 0.22 mm1
β = 102.850 (1)°T = 173 K
V = 1557.46 (16) Å3Block, colourless
Z = 40.45 × 0.34 × 0.27 mm

Data collection

Bruker SMART 1000 CCD diffractometer3354 independent reflections
Radiation source: fine-focus sealed tube2555 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)h = −16→19
Tmin = 0.904, Tmax = 0.944k = −7→7
7882 measured reflectionsl = −21→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0601P)2 + 0.2665P] where P = (Fo2 + 2Fc2)/3
3354 reflections(Δ/σ)max = 0.003
194 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.90482 (3)0.20760 (7)0.10019 (2)0.02108 (14)
C10.78421 (10)0.5823 (3)0.90053 (9)0.0194 (3)
C20.80908 (11)0.4025 (3)0.86141 (10)0.0221 (4)
C30.74104 (12)0.2913 (3)0.80842 (10)0.0268 (4)
H30.75570.16870.78020.032*
C40.65245 (12)0.3572 (3)0.79640 (11)0.0299 (4)
H40.60680.27910.76030.036*
C50.62989 (12)0.5364 (3)0.83675 (11)0.0275 (4)
H50.56870.57990.82790.033*
C60.69564 (11)0.6543 (3)0.89020 (10)0.0214 (4)
C70.90521 (12)0.3284 (3)0.87383 (11)0.0290 (4)
H7A0.94090.44050.85470.044*
H7B0.90770.19490.84330.044*
H7C0.92970.30170.93160.044*
C80.67261 (11)0.8507 (3)0.93471 (11)0.0267 (4)
H8A0.70640.97590.92040.032*
H8B0.69370.82560.99360.032*
C90.57363 (13)0.9096 (4)0.91767 (15)0.0467 (6)
H9A0.55250.94290.86000.070*
H9B0.56531.03610.95000.070*
H9C0.53920.78760.93200.070*
C100.88515 (10)0.1172 (3)0.19401 (10)0.0206 (3)
C110.90431 (11)0.2524 (3)0.26121 (10)0.0246 (4)
H110.92580.39480.25640.029*
C120.89200 (12)0.1787 (3)0.33539 (11)0.0281 (4)
H120.90530.27160.38120.034*
C130.86041 (11)−0.0297 (3)0.34369 (11)0.0266 (4)
C140.84062 (12)−0.1613 (3)0.27551 (12)0.0302 (4)
H140.8180−0.30280.27990.036*
C150.85323 (12)−0.0899 (3)0.20085 (11)0.0283 (4)
H150.8401−0.18250.15500.034*
C160.84628 (14)−0.1093 (4)0.42440 (12)0.0380 (5)
H16A0.8966−0.06240.46770.057*
H16B0.8430−0.26750.42380.057*
H16C0.7900−0.04970.43400.057*
N10.85616 (9)0.6956 (2)0.95856 (8)0.0200 (3)
H1A0.83490.82420.97250.030*
H1B0.90360.71950.93520.030*
H1C0.87430.61291.00370.030*
O10.88551 (8)0.43864 (19)0.09615 (7)0.0257 (3)
O20.84407 (8)0.0861 (2)0.03804 (7)0.0307 (3)
O30.99931 (8)0.1642 (2)0.10318 (8)0.0311 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0223 (2)0.0194 (2)0.0217 (2)0.00109 (16)0.00531 (16)−0.00141 (17)
C10.0208 (8)0.0203 (8)0.0165 (8)−0.0022 (6)0.0031 (6)0.0025 (6)
C20.0273 (9)0.0191 (8)0.0200 (8)0.0006 (7)0.0055 (7)0.0029 (7)
C30.0354 (10)0.0221 (9)0.0236 (9)−0.0033 (7)0.0078 (7)−0.0031 (7)
C40.0294 (10)0.0329 (10)0.0253 (9)−0.0110 (8)0.0019 (7)−0.0032 (8)
C50.0217 (9)0.0322 (10)0.0276 (9)−0.0028 (7)0.0037 (7)0.0022 (8)
C60.0226 (8)0.0227 (9)0.0191 (8)−0.0006 (7)0.0051 (6)0.0040 (7)
C70.0310 (10)0.0255 (10)0.0307 (10)0.0039 (7)0.0072 (8)−0.0050 (8)
C80.0208 (9)0.0275 (9)0.0313 (10)0.0002 (7)0.0047 (7)−0.0035 (8)
C90.0288 (11)0.0464 (13)0.0616 (15)0.0094 (10)0.0029 (10)−0.0170 (11)
C100.0187 (8)0.0204 (8)0.0232 (8)0.0015 (6)0.0055 (6)−0.0007 (7)
C110.0241 (9)0.0231 (9)0.0267 (9)−0.0039 (7)0.0062 (7)−0.0028 (7)
C120.0276 (9)0.0316 (10)0.0252 (9)−0.0024 (8)0.0060 (7)−0.0048 (8)
C130.0203 (9)0.0315 (10)0.0294 (9)0.0036 (7)0.0086 (7)0.0040 (8)
C140.0331 (10)0.0208 (9)0.0390 (11)−0.0013 (7)0.0132 (8)0.0027 (8)
C150.0328 (10)0.0224 (9)0.0312 (10)−0.0029 (7)0.0102 (8)−0.0051 (8)
C160.0379 (11)0.0462 (12)0.0331 (11)0.0019 (9)0.0148 (9)0.0071 (9)
N10.0186 (7)0.0212 (7)0.0197 (7)0.0017 (6)0.0031 (5)−0.0007 (6)
O10.0323 (7)0.0203 (6)0.0238 (6)0.0022 (5)0.0050 (5)0.0008 (5)
O20.0375 (7)0.0285 (7)0.0248 (7)−0.0043 (6)0.0044 (5)−0.0072 (5)
O30.0250 (7)0.0335 (8)0.0374 (7)0.0061 (5)0.0125 (5)0.0071 (6)

Geometric parameters (Å, °)

S1—O21.4482 (12)C8—H8B0.9900
S1—O31.4557 (13)C9—H9A0.9800
S1—O11.4584 (12)C9—H9B0.9800
S1—C101.7709 (17)C9—H9C0.9800
C1—C21.390 (2)C10—C151.385 (2)
C1—C61.396 (2)C10—C111.390 (2)
C1—N11.477 (2)C11—C121.387 (2)
C2—C31.393 (2)C11—H110.9500
C2—C71.505 (2)C12—C131.395 (2)
C3—C41.382 (3)C12—H120.9500
C3—H30.9500C13—C141.389 (3)
C4—C51.386 (3)C13—C161.512 (2)
C4—H40.9500C14—C151.392 (3)
C5—C61.397 (2)C14—H140.9500
C5—H50.9500C15—H150.9500
C6—C81.512 (2)C16—H16A0.9800
C7—H7A0.9800C16—H16B0.9800
C7—H7B0.9800C16—H16C0.9800
C7—H7C0.9800N1—H1A0.9100
C8—C91.517 (2)N1—H1B0.9100
C8—H8A0.9900N1—H1C0.9100
O2—S1—O3113.45 (8)C8—C9—H9A109.5
O2—S1—O1112.66 (7)C8—C9—H9B109.5
O3—S1—O1111.75 (7)H9A—C9—H9B109.5
O2—S1—C10106.17 (8)C8—C9—H9C109.5
O3—S1—C10105.92 (7)H9A—C9—H9C109.5
O1—S1—C10106.21 (7)H9B—C9—H9C109.5
C2—C1—C6123.69 (15)C15—C10—C11120.17 (16)
C2—C1—N1117.11 (14)C15—C10—S1120.01 (13)
C6—C1—N1119.15 (14)C11—C10—S1119.79 (13)
C1—C2—C3117.31 (15)C12—C11—C10119.79 (16)
C1—C2—C7122.52 (15)C12—C11—H11120.1
C3—C2—C7120.16 (16)C10—C11—H11120.1
C4—C3—C2120.86 (16)C11—C12—C13120.95 (17)
C4—C3—H3119.6C11—C12—H12119.5
C2—C3—H3119.6C13—C12—H12119.5
C3—C4—C5120.35 (16)C14—C13—C12118.31 (16)
C3—C4—H4119.8C14—C13—C16120.74 (17)
C5—C4—H4119.8C12—C13—C16120.94 (17)
C4—C5—C6121.05 (16)C13—C14—C15121.31 (17)
C4—C5—H5119.5C13—C14—H14119.3
C6—C5—H5119.5C15—C14—H14119.3
C1—C6—C5116.73 (15)C10—C15—C14119.45 (17)
C1—C6—C8121.31 (15)C10—C15—H15120.3
C5—C6—C8121.96 (15)C14—C15—H15120.3
C2—C7—H7A109.5C13—C16—H16A109.5
C2—C7—H7B109.5C13—C16—H16B109.5
H7A—C7—H7B109.5H16A—C16—H16B109.5
C2—C7—H7C109.5C13—C16—H16C109.5
H7A—C7—H7C109.5H16A—C16—H16C109.5
H7B—C7—H7C109.5H16B—C16—H16C109.5
C6—C8—C9115.46 (15)C1—N1—H1A109.5
C6—C8—H8A108.4C1—N1—H1B109.5
C9—C8—H8A108.4H1A—N1—H1B109.5
C6—C8—H8B108.4C1—N1—H1C109.5
C9—C8—H8B108.4H1A—N1—H1C109.5
H8A—C8—H8B107.5H1B—N1—H1C109.5
C6—C1—C2—C30.8 (2)O2—S1—C10—C1527.27 (16)
N1—C1—C2—C3178.16 (14)O3—S1—C10—C15−93.63 (15)
C6—C1—C2—C7−179.91 (16)O1—S1—C10—C15147.40 (13)
N1—C1—C2—C7−2.5 (2)O2—S1—C10—C11−154.60 (13)
C1—C2—C3—C4−0.7 (3)O3—S1—C10—C1184.50 (14)
C7—C2—C3—C4179.95 (16)O1—S1—C10—C11−34.46 (15)
C2—C3—C4—C50.4 (3)C15—C10—C11—C120.5 (3)
C3—C4—C5—C60.0 (3)S1—C10—C11—C12−177.65 (13)
C2—C1—C6—C5−0.5 (2)C10—C11—C12—C13−0.1 (3)
N1—C1—C6—C5−177.76 (14)C11—C12—C13—C14−0.7 (3)
C2—C1—C6—C8179.76 (16)C11—C12—C13—C16−179.50 (16)
N1—C1—C6—C82.5 (2)C12—C13—C14—C151.1 (3)
C4—C5—C6—C10.0 (2)C16—C13—C14—C15179.94 (17)
C4—C5—C6—C8179.83 (17)C11—C10—C15—C14−0.1 (3)
C1—C6—C8—C9−179.87 (17)S1—C10—C15—C14178.07 (13)
C5—C6—C8—C90.4 (3)C13—C14—C15—C10−0.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1C···O1i0.911.882.7727 (18)168
N1—H1B···O3ii0.911.892.7800 (19)166
N1—H1A···O2iii0.911.952.7917 (18)153

Symmetry codes: (i) x, y, z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y+1, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2133).

References

  • Benali-Cherif, N., Boussekine, H., Boutobba, Z. & Kateb, A. (2007). Acta Cryst. E63, o3287.
  • Benslimane, M., Merazig, H., Bouacida, S., Denbri, S., Beghidja, A. & Ouahab, L. (2007). Acta Cryst. E63, o3682–o3683.
  • Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Elmali, A., Elerman, Y. & Svoboda, I. (2001). Acta Cryst. C57, 485–486. [PubMed]
  • Fábry, J., Krupková, R. & Studnička, V. (2002). Acta Cryst. E58, o105–o107.
  • Fábry, J., Krupková, R. & Vaněk, P. (2001). Acta Cryst. E57, o1058–o1060.
  • Khemiri, H., Akriche, S. & Rzaigui, M. (2008). Acta Cryst. E64, o526. [PMC free article] [PubMed]
  • Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153–o1155.
  • Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Smirani, W., Amri, O. & Rzaigui, M. (2008). Acta Cryst. E64, o2463. [PMC free article] [PubMed]
  • Smirani, W. & Rzaigui, M. (2009). Acta Cryst. E65, o83. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography