PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o220.
Published online 2009 January 8. doi:  10.1107/S1600536808043705
PMCID: PMC2968235

Dimethyl 4,4-diacetyl­hepta­nedioate

Abstract

The mol­ecule of the title dicarbonyl compound, C13H20O6, possesses approximate local twofold symmetry. In the crystal, inter­molecular C—H(...)O hydrogen bonds link the mol­ecules, generating a chain structure.

Related literature

For general background, see: Kim et al. (2001 [triangle]); Chetia et al. (2004 [triangle]); Ranu & Banerjee (2005 [triangle]); Wang et al. (2008 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o220-scheme1.jpg

Experimental

Crystal data

  • C13H20O6
  • M r = 272.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o220-efi1.jpg
  • a = 11.402 (2) Å
  • b = 8.6910 (17) Å
  • c = 14.845 (3) Å
  • β = 107.35 (3)°
  • V = 1404.1 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.970, T max = 0.990
  • 2531 measured reflections
  • 2531 independent reflections
  • 1783 reflections with I > 2σ(I)
  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.202
  • S = 1.01
  • 2531 reflections
  • 172 parameters
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043705/sj2570sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043705/sj2570Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

supplementary crystallographic information

Comment

Dicarbonyl compounds represent an important class of starting materials used to increase the carbon number of organic compounds (Kim et al., 2001). Some dicarbonyl compounds are useful for the synthesis of enantiomerically pure alcohols (Chetia et al., 2004). Many dicarbonyl compounds have been synthesized with Michael Addition method using diethyl malonate as the starting mateiral, but only a few Michael Addition diadducts have been synthesized under normal condition (Ranu & Banerjee, 2005; Wang et al., 2008). We are focusing our synthetic and structural studies on new products of Michael Addition diadducts from dicarbonyl compounds. We report here the crystal structure of the title dicarbonyl compound (I), Fig 1.

All bond lengths in the compound are within normal ranges (Allen et al., 1987). The central C13 atom lies on a lies on a non-crystallographic pseudo twofold rotation axis. Intermolecular C—H···O hydrogen bond (Table 1, Fig.2) help to establish the one-dimensional supramolecular structure.

Experimental

Acetylacetone (50 mmol), anhydrous potassium carbonate (100 mmol), tetrabutylammonium bromide (1 g) were dissolved in toluene (20 ml) and methyl acrylate (100 mmol) was slowly dropped to the mixture which was stirred for 24 h at 303–333 K, then 100 ml water was added. The organic layer was dried with magnesium sulfate and the solvent removed under vacuum to obtain the crude product, (I). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution. 1H NMR (CDCl3, δ, p.p.m.) 3.62(s, 6H), 2.23(m, 4H), 2.144 (m, 10H).

Refinement

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Figures

Fig. 1.
A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids.
Fig. 2.
The crystal packing of (I) Intermolecular hydrogen bonds are shown as dashed lines.

Crystal data

C13H20O6F(000) = 584
Mr = 272.29Dx = 1.288 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 27 reflections
a = 11.402 (2) Åθ = 8–15°
b = 8.6910 (17) ŵ = 0.10 mm1
c = 14.845 (3) ÅT = 293 K
β = 107.35 (3)°Block, colourless
V = 1404.1 (5) Å30.30 × 0.20 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer1783 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.3°, θmin = 1.9°
ω/2θ scansh = −13→13
Absorption correction: ψ scan (North et al., 1968)k = 0→10
Tmin = 0.970, Tmax = 0.990l = 0→17
2531 measured reflections3 standard reflections every 200 reflections
2531 independent reflections intensity decay: 9%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.1P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1970 (2)−0.2798 (3)0.80271 (19)0.0587 (7)
O21.1274 (2)−0.0419 (2)0.80976 (18)0.0552 (7)
O30.5191 (2)−0.3553 (3)0.66776 (18)0.0646 (7)
O40.5065 (2)−0.1212 (3)0.60519 (17)0.0585 (7)
O50.7976 (2)0.0496 (2)0.94983 (17)0.0506 (6)
O60.8453 (2)−0.4676 (2)0.96422 (18)0.0567 (7)
C11.2919 (4)−0.2184 (5)0.7683 (3)0.0710 (12)
H1A1.3430−0.30060.75860.106*
H1B1.3407−0.14720.81360.106*
H1C1.2556−0.16600.70970.106*
C21.1177 (3)−0.1782 (3)0.8194 (2)0.0401 (7)
C31.0191 (3)−0.2557 (3)0.8502 (2)0.0408 (7)
H3A1.0564−0.32250.90330.049*
H3B0.9697−0.31900.79910.049*
C40.9365 (2)−0.1393 (3)0.8785 (2)0.0360 (7)
H4A0.9057−0.06730.82690.043*
H4B0.9858−0.08140.93240.043*
C50.4002 (3)−0.1660 (5)0.5299 (3)0.0597 (10)
H5A0.3724−0.08050.48810.089*
H5B0.3361−0.19740.55570.089*
H5C0.4211−0.25010.49570.089*
C60.5572 (3)−0.2265 (4)0.6703 (2)0.0430 (7)
C70.6632 (3)−0.1613 (4)0.7454 (2)0.0513 (8)
H7A0.6340−0.07850.77690.062*
H7B0.7214−0.11790.71630.062*
C80.7290 (3)−0.2793 (3)0.8186 (2)0.0413 (7)
H8A0.7683−0.35420.78870.050*
H8B0.6686−0.33330.84100.050*
C90.6618 (3)−0.1291 (4)0.9838 (3)0.0582 (9)
H9A0.6315−0.04011.00810.087*
H9B0.6907−0.20331.03340.087*
H9C0.5967−0.17340.93380.087*
C100.7649 (3)−0.0831 (4)0.9467 (2)0.0393 (7)
C110.9581 (3)−0.2844 (4)1.0738 (2)0.0539 (9)
H11A0.9808−0.37201.11460.081*
H11B0.9172−0.21021.10180.081*
H11C1.0305−0.23891.06480.081*
C120.8733 (3)−0.3344 (3)0.9802 (2)0.0394 (7)
C130.8265 (2)−0.2094 (3)0.9038 (2)0.0341 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0587 (14)0.0424 (13)0.0902 (18)0.0057 (11)0.0453 (14)0.0031 (12)
O20.0663 (15)0.0377 (13)0.0743 (16)−0.0010 (11)0.0403 (13)0.0039 (11)
O30.0630 (16)0.0488 (15)0.0686 (16)−0.0126 (12)−0.0008 (13)0.0054 (12)
O40.0587 (15)0.0523 (14)0.0544 (14)−0.0080 (11)0.0015 (11)0.0059 (11)
O50.0508 (13)0.0329 (12)0.0712 (16)0.0012 (10)0.0228 (11)−0.0047 (10)
O60.0595 (15)0.0344 (13)0.0714 (16)−0.0049 (10)0.0123 (12)0.0102 (11)
C10.065 (2)0.063 (2)0.105 (3)−0.0007 (19)0.055 (2)−0.006 (2)
C20.0444 (17)0.0383 (17)0.0393 (16)−0.0001 (13)0.0149 (13)−0.0041 (12)
C30.0439 (16)0.0348 (15)0.0472 (17)0.0000 (13)0.0188 (13)0.0000 (12)
C40.0335 (15)0.0300 (14)0.0444 (16)−0.0032 (12)0.0114 (12)−0.0044 (12)
C50.0441 (19)0.075 (3)0.053 (2)0.0015 (18)0.0036 (16)0.0057 (18)
C60.0394 (16)0.0485 (19)0.0436 (17)−0.0009 (14)0.0163 (14)−0.0008 (14)
C70.0530 (19)0.0474 (19)0.0449 (17)−0.0104 (15)0.0013 (15)0.0036 (15)
C80.0409 (16)0.0355 (16)0.0468 (17)−0.0046 (13)0.0122 (14)−0.0004 (13)
C90.050 (2)0.060 (2)0.075 (2)0.0021 (17)0.0360 (18)0.0016 (18)
C100.0316 (15)0.0415 (17)0.0423 (16)0.0022 (13)0.0072 (12)−0.0005 (13)
C110.065 (2)0.0460 (19)0.0474 (19)0.0052 (16)0.0111 (16)0.0047 (15)
C120.0385 (15)0.0337 (16)0.0499 (17)0.0005 (12)0.0191 (13)0.0033 (13)
C130.0322 (14)0.0293 (14)0.0408 (15)−0.0007 (11)0.0108 (12)−0.0010 (11)

Geometric parameters (Å, °)

O1—C21.339 (4)C5—H5B0.9600
O1—C11.430 (4)C5—H5C0.9600
O2—C21.202 (4)C6—C71.491 (4)
O3—C61.197 (4)C7—C81.519 (4)
O4—C61.331 (4)C7—H7A0.9700
O4—C51.436 (4)C7—H7B0.9700
O5—C101.209 (4)C8—C131.538 (4)
O6—C121.206 (4)C8—H8A0.9700
C1—H1A0.9600C8—H8B0.9700
C1—H1B0.9600C9—C101.494 (4)
C1—H1C0.9600C9—H9A0.9600
C2—C31.495 (4)C9—H9B0.9600
C3—C41.524 (4)C9—H9C0.9600
C3—H3A0.9700C10—C131.540 (4)
C3—H3B0.9700C11—C121.501 (5)
C4—C131.539 (4)C11—H11A0.9600
C4—H4A0.9700C11—H11B0.9600
C4—H4B0.9700C11—H11C0.9600
C5—H5A0.9600C12—C131.546 (4)
C2—O1—C1116.4 (3)C8—C7—H7A108.9
C6—O4—C5117.5 (3)C6—C7—H7B108.9
O1—C1—H1A109.5C8—C7—H7B108.9
O1—C1—H1B109.5H7A—C7—H7B107.7
H1A—C1—H1B109.5C7—C8—C13113.8 (2)
O1—C1—H1C109.5C7—C8—H8A108.8
H1A—C1—H1C109.5C13—C8—H8A108.8
H1B—C1—H1C109.5C7—C8—H8B108.8
O2—C2—O1122.5 (3)C13—C8—H8B108.8
O2—C2—C3125.8 (3)H8A—C8—H8B107.7
O1—C2—C3111.8 (3)C10—C9—H9A109.5
C2—C3—C4111.6 (2)C10—C9—H9B109.5
C2—C3—H3A109.3H9A—C9—H9B109.5
C4—C3—H3A109.3C10—C9—H9C109.5
C2—C3—H3B109.3H9A—C9—H9C109.5
C4—C3—H3B109.3H9B—C9—H9C109.5
H3A—C3—H3B108.0O5—C10—C9120.6 (3)
C3—C4—C13114.8 (2)O5—C10—C13121.5 (3)
C3—C4—H4A108.6C9—C10—C13117.9 (3)
C13—C4—H4A108.6C12—C11—H11A109.5
C3—C4—H4B108.6C12—C11—H11B109.5
C13—C4—H4B108.6H11A—C11—H11B109.5
H4A—C4—H4B107.5C12—C11—H11C109.5
O4—C5—H5A109.5H11A—C11—H11C109.5
O4—C5—H5B109.5H11B—C11—H11C109.5
H5A—C5—H5B109.5O6—C12—C11121.3 (3)
O4—C5—H5C109.5O6—C12—C13121.1 (3)
H5A—C5—H5C109.5C11—C12—C13117.5 (3)
H5B—C5—H5C109.5C8—C13—C4113.4 (2)
O3—C6—O4123.0 (3)C8—C13—C10108.4 (2)
O3—C6—C7125.7 (3)C4—C13—C10108.9 (2)
O4—C6—C7111.2 (3)C8—C13—C12109.4 (2)
C6—C7—C8113.3 (3)C4—C13—C12109.2 (2)
C6—C7—H7A108.9C10—C13—C12107.3 (2)
C1—O1—C2—O2−2.7 (5)C3—C4—C13—C10170.5 (2)
C1—O1—C2—C3177.0 (3)C3—C4—C13—C1253.6 (3)
O2—C2—C3—C4−5.9 (4)O5—C10—C13—C8−118.2 (3)
O1—C2—C3—C4174.3 (3)C9—C10—C13—C861.1 (3)
C2—C3—C4—C13175.5 (2)O5—C10—C13—C45.6 (4)
C5—O4—C6—O30.9 (5)C9—C10—C13—C4−175.1 (3)
C5—O4—C6—C7−177.8 (3)O5—C10—C13—C12123.7 (3)
O3—C6—C7—C84.6 (5)C9—C10—C13—C12−57.0 (3)
O4—C6—C7—C8−176.7 (3)O6—C12—C13—C89.0 (4)
C6—C7—C8—C13−171.8 (3)C11—C12—C13—C8−172.9 (3)
C7—C8—C13—C4−66.3 (3)O6—C12—C13—C4−115.7 (3)
C7—C8—C13—C1054.8 (3)C11—C12—C13—C462.4 (3)
C7—C8—C13—C12171.5 (3)O6—C12—C13—C10126.4 (3)
C3—C4—C13—C8−68.8 (3)C11—C12—C13—C10−55.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C4—H4B···O5i0.972.583.418 (4)145
C3—H3B···O2ii0.972.553.500 (4)165

Symmetry codes: (i) −x+2, −y, −z+2; (ii) −x+2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2570).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chetia, A., Saikia, C. J., Lekhok, K. C. & Boruah, R. C. (2004). Tetrahedron Lett.45, 2649–2651.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett.42, 6299–6301.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Ranu, B. C. & Banerjee, S. (2005). Org. Lett.7, 3049–3052. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography