PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o407–o408.
Published online 2009 January 28. doi:  10.1107/S1600536809003031
PMCID: PMC2968224

3-(1,3-Dioxolan-2-yl)-2-hydrazino-7-methyl­quinoline

Abstract

In the title mol­ecule, C13H15N3O2, the dihedral angle between the mean plane of the 1,3-dioxolane group and the 2-hydrazino-7-methyl­isoquinoline unit is 85.21 (5)°. The conformation of the mol­ecule is influenced by bifurcated N—H(...)(O,O) and N—H(...)N intra­molecular hydrogen bonds. In the crystal structure, mol­ecules are linked via inter­molecular N—H(...)O hydrogen bonds, forming extended chains along [001].

Related literature

For general background to hydrazine compounds, see: Broadhurst et al. (2001 [triangle]); Behrens (1999 [triangle]); Broadhurst (1991 [triangle]); Chao et al. (1999 [triangle]); Kametani (1968 [triangle]). For related crystal structures, see: Yang et al. (2008 [triangle]); Choudhury & Guru Row (2006 [triangle]); Choudhury et al. (2002 [triangle]); Hathwar et al. (2008 [triangle]); Cho et al. (2002 [triangle]); Manivel et al. (2009 [triangle]), and references therein. For bond-length data, see: Allen et al., 1987 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-65-0o407-scheme1.jpg

Experimental

Crystal data

  • C13H15N3O2
  • M r = 245.28
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o407-efi1.jpg
  • a = 13.1909 (17) Å
  • b = 10.1165 (13) Å
  • c = 9.7805 (13) Å
  • β = 109.956 (2)°
  • V = 1226.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 290 (2) K
  • 0.30 × 0.21 × 0.14 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.942, T max = 0.987
  • 8929 measured reflections
  • 2279 independent reflections
  • 1699 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.129
  • S = 1.06
  • 2279 reflections
  • 176 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003031/lh2748sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003031/lh2748Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility setup under the IRHPA-DST program at IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The title compound (I), belongs to the quinoline class. Quinolines and quinolinones are an integral part of many naturally occurring fused heterocycles and find application in synthetic and pharmaceutical chemistry (Kametani, 1968). Isoquinolinones and isoquinolineamines have been reported as cancer chemotherapeutic agents (Behrens, 1999) whereas quinolyl and isoquinolyl derivatives have been reported as insecticidal compounds (Broadhurst, 1991). 3-substituted isoquinolines have potent use in medicine (Chao et al., 1999) and in general, hydrazine derivatives can be used as medicaments (Broadhurst et al., 2001; Choudhury, et al., 2002; Choudhury & Guru Row, 2006; Yang, et al., 2008). Due to the importance of quinoline derivates (Cho et al., 2002) and in continuous of our research on quinolines and isoquinoline derivatives (Hathwar et al., 2008; Manivel et al., 2009) we present here crystal structure of the title compound.

In (I) the dihedral angle between 1,3-dioxolane moiety and 2 hyrazino-7-methyl isoquinoline unit is 85.21 (5)°. All bond lengths (Allen et al., 1987) and angles are within normal ranges. The conformation of the molecule is influenced by N—H···O and N—H···N intramolecular hydrogen bonds whereas the crystal structure is stabilized by intermolecular N—H···O hydrogen bonds forming exteded chains along [001].

Experimental

A solution of 2-chloro (3-(1,3-dioxolan-2-yl)-7-methylquinoline in ethanol was treated with hydrazine hydrate and stirred at 323 K for 3hr. The product was filtered. The solid was washed with water and diethyl ether and dried under vacuum. Single crystals were obtained by recrystalization of (I) from DMSO.

Refinement

All H atoms positioned geometrically and refined using a riding model with bond lengths C—H = 0.93 Å (for aromatic), 0.97 Å (for methylene) and 0.96 Å (for methyl). The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C) for all other carbon bound H atoms. H atoms bonded to N atoms were located in difference Fourier maps and refined isotropically.

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids. Dashed lines indicate hydrogen bonds.
Fig. 2.
Part of the crystal structure of (I) showing hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonds have been omitted.

Crystal data

C13H15N3O2F(000) = 520
Mr = 245.28Dx = 1.328 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 948 reflections
a = 13.1909 (17) Åθ = 1.8–24.6°
b = 10.1165 (13) ŵ = 0.09 mm1
c = 9.7805 (13) ÅT = 290 K
β = 109.956 (2)°Block, brown
V = 1226.8 (3) Å30.30 × 0.21 × 0.14 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2279 independent reflections
Radiation source: fine-focus sealed tube1699 reflections with I > 2σ(I)
graphiteRint = 0.018
[var phi] and ω scansθmax = 25.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −15→15
Tmin = 0.942, Tmax = 0.987k = −10→12
8929 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.072P)2 + 0.1104P] where P = (Fo2 + 2Fc2)/3
2279 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.10652 (9)0.42297 (12)−0.28334 (11)0.0621 (4)
O20.09919 (10)0.22186 (13)−0.18872 (12)0.0701 (4)
N10.32415 (10)0.45872 (13)0.15262 (13)0.0524 (4)
N20.14264 (11)0.45599 (16)0.02767 (15)0.0597 (4)
N30.12501 (13)0.53613 (19)0.13548 (18)0.0664 (4)
C10.24495 (12)0.42351 (15)0.03448 (15)0.0464 (4)
C20.26133 (12)0.35152 (15)−0.08326 (15)0.0480 (4)
C30.36404 (13)0.31857 (15)−0.06896 (17)0.0550 (4)
H3A0.37720.2726−0.14350.066*
C40.56033 (15)0.32091 (18)0.0793 (2)0.0688 (5)
H4A0.57780.27500.00800.083*
C50.64009 (14)0.35734 (19)0.2051 (2)0.0732 (6)
H5A0.71110.33440.21860.088*
C60.61719 (14)0.4286 (2)0.3145 (2)0.0662 (5)
C70.51244 (13)0.46184 (19)0.29207 (17)0.0615 (5)
H7A0.49660.51070.36280.074*
C80.42773 (12)0.42464 (15)0.16556 (16)0.0496 (4)
C90.45173 (12)0.35270 (15)0.05728 (17)0.0533 (4)
C100.70689 (16)0.4661 (3)0.4525 (2)0.0949 (8)
H10A0.67670.49360.52440.142*
H10B0.74810.53720.43290.142*
H10C0.75300.39110.48820.142*
C110.17109 (13)0.31376 (16)−0.21833 (17)0.0540 (4)
H11A0.20100.2745−0.28790.065*
C12−0.00343 (14)0.2421 (2)−0.2979 (2)0.0782 (6)
H12A−0.05880.2540−0.25440.094*
H12B−0.02280.1675−0.36400.094*
C130.00918 (15)0.3653 (2)−0.37670 (19)0.0764 (6)
H13A0.01460.3440−0.47060.092*
H13B−0.05130.4247−0.39100.092*
H2N0.0904 (15)0.4447 (17)−0.050 (2)0.064 (5)*
H3NB0.1453 (18)0.484 (2)0.218 (2)0.095 (7)*
H3NA0.1821 (17)0.597 (2)0.158 (2)0.078 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0577 (7)0.0724 (8)0.0494 (6)0.0026 (6)0.0095 (5)0.0034 (5)
O20.0667 (8)0.0722 (8)0.0642 (7)−0.0201 (6)0.0130 (6)−0.0040 (6)
N10.0475 (8)0.0647 (9)0.0438 (7)−0.0047 (6)0.0141 (6)−0.0015 (6)
N20.0476 (8)0.0838 (11)0.0443 (7)0.0051 (7)0.0114 (6)−0.0113 (7)
N30.0626 (10)0.0782 (11)0.0586 (9)0.0087 (9)0.0211 (7)−0.0131 (9)
C10.0467 (8)0.0495 (9)0.0426 (8)0.0001 (7)0.0145 (7)0.0037 (6)
C20.0497 (9)0.0465 (8)0.0470 (8)0.0006 (7)0.0153 (7)0.0012 (6)
C30.0580 (10)0.0492 (9)0.0589 (9)0.0019 (7)0.0214 (8)−0.0077 (7)
C40.0566 (10)0.0607 (11)0.0890 (13)0.0055 (8)0.0245 (9)−0.0053 (10)
C50.0424 (9)0.0707 (12)0.0974 (14)0.0022 (8)0.0122 (9)0.0105 (11)
C60.0518 (10)0.0774 (13)0.0628 (11)−0.0136 (9)0.0108 (8)0.0122 (9)
C70.0526 (10)0.0785 (12)0.0512 (9)−0.0134 (8)0.0148 (8)0.0024 (8)
C80.0480 (9)0.0526 (9)0.0470 (8)−0.0057 (7)0.0147 (7)0.0065 (7)
C90.0474 (9)0.0470 (9)0.0629 (10)0.0001 (7)0.0156 (7)0.0035 (7)
C100.0550 (11)0.138 (2)0.0771 (13)−0.0265 (12)0.0040 (10)0.0078 (13)
C110.0531 (9)0.0597 (10)0.0492 (9)−0.0007 (7)0.0175 (7)−0.0083 (7)
C120.0554 (11)0.0901 (15)0.0852 (13)−0.0112 (10)0.0188 (10)−0.0274 (12)
C130.0565 (11)0.1135 (17)0.0500 (9)0.0012 (11)0.0065 (8)−0.0119 (11)

Geometric parameters (Å, °)

O1—C111.4074 (19)C4—H4A0.9300
O1—C131.422 (2)C5—C61.406 (3)
O2—C121.424 (2)C5—H5A0.9300
O2—C111.427 (2)C6—C71.365 (3)
N1—C11.3151 (18)C6—C101.509 (2)
N1—C81.372 (2)C7—C81.406 (2)
N2—C11.3683 (19)C7—H7A0.9300
N2—N31.411 (2)C8—C91.407 (2)
N2—H2N0.843 (19)C10—H10A0.9600
N3—H3NB0.92 (2)C10—H10B0.9600
N3—H3NA0.94 (2)C10—H10C0.9600
C1—C21.440 (2)C11—H11A0.9800
C2—C31.355 (2)C12—C131.504 (3)
C2—C111.495 (2)C12—H12A0.9700
C3—C91.417 (2)C12—H12B0.9700
C3—H3A0.9300C13—H13A0.9700
C4—C51.368 (3)C13—H13B0.9700
C4—C91.411 (2)
C11—O1—C13104.05 (14)N1—C8—C7118.75 (15)
C12—O2—C11106.35 (14)N1—C8—C9122.22 (14)
C1—N1—C8118.70 (13)C7—C8—C9119.03 (15)
C1—N2—N3120.87 (13)C8—C9—C4118.70 (15)
C1—N2—H2N120.1 (12)C8—C9—C3117.09 (14)
N3—N2—H2N117.4 (12)C4—C9—C3124.20 (16)
N2—N3—H3NB104.8 (14)C6—C10—H10A109.5
N2—N3—H3NA102.9 (12)C6—C10—H10B109.5
H3NB—N3—H3NA101.6 (18)H10A—C10—H10B109.5
N1—C1—N2116.89 (14)C6—C10—H10C109.5
N1—C1—C2123.28 (14)H10A—C10—H10C109.5
N2—C1—C2119.82 (13)H10B—C10—H10C109.5
C3—C2—C1117.35 (13)O1—C11—O2105.16 (13)
C3—C2—C11119.66 (14)O1—C11—C2112.04 (13)
C1—C2—C11122.99 (13)O2—C11—C2111.79 (13)
C2—C3—C9121.34 (15)O1—C11—H11A109.2
C2—C3—H3A119.3O2—C11—H11A109.2
C9—C3—H3A119.3C2—C11—H11A109.2
C5—C4—C9120.33 (18)O2—C12—C13105.10 (14)
C5—C4—H4A119.8O2—C12—H12A110.7
C9—C4—H4A119.8C13—C12—H12A110.7
C4—C5—C6121.55 (17)O2—C12—H12B110.7
C4—C5—H5A119.2C13—C12—H12B110.7
C6—C5—H5A119.2H12A—C12—H12B108.8
C7—C6—C5118.21 (16)O1—C13—C12104.14 (14)
C7—C6—C10121.57 (19)O1—C13—H13A110.9
C5—C6—C10120.22 (17)C12—C13—H13A110.9
C6—C7—C8122.15 (17)O1—C13—H13B110.9
C6—C7—H7A118.9C12—C13—H13B110.9
C8—C7—H7A118.9H13A—C13—H13B108.9

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2N···O10.843 (19)2.372 (18)2.9329 (17)124.5 (15)
N2—H2N···O20.843 (19)2.653 (18)3.0968 (19)114.3 (14)
N3—H3NA···N10.94 (2)2.35 (2)2.691 (2)100.9 (15)
N3—H3NB···O2i0.92 (2)2.44 (2)3.207 (2)141.2 (19)

Symmetry codes: (i) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2748).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Behrens, C. H. (1999). US Patent No. 4 942 163.
  • Broadhurst, M. D. (1991). US Patent No. 5 070 097.
  • Broadhurst, M. D., Michael, J. J., William, H. W. & Daryl, S. (2001). US Patent No. 6 235 787.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chao, Q., Deng, L., Shih, H., Leoni, L. M., Genini, D., Carson, D. A. & Cottam, H. B. (1999). J. Med. Chem.2, 3860–3873. [PubMed]
  • Cho, W., Kim, E., Park, I. Y., Jeong, E. Y., Kim, T. S., Le, T. N., Kim, D. & Leed, E. (2002). Bioorg. Med. Chem.10, 2953–2961. [PubMed]
  • Choudhury, A. R. & Guru Row, T. N. (2006). CrystEngComm, 8, 265–274.
  • Choudhury, A. R., Urs, U. K., Guru Row, T. N. & Nagarajan, K. (2002). J. Mol. Struct.605, 71–77.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hathwar, V. R., Prabakaran, K., Subashini, R., Manivel, P. & Khan, F. N. (2008). Acta Cryst. E64, o2295. [PMC free article] [PubMed]
  • Kametani, T. (1968). The Chemistry of the Isoquinoline Alkaloids Tokyo, Amsterdam: Hirokawa, Elsevier.
  • Manivel, P., Hathwar, V. R., Nithya, P., Prabakaran, K. & Khan, F. N. (2009). Acta Cryst. E65, o137–o138. [PMC free article] [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yang, Y., Yang, P., Zhang, C. & Wu, B. (2008). Anal. Sci.24, x97–x98.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography