PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o262.
Published online 2009 January 8. doi:  10.1107/S1600536808044073
PMCID: PMC2968222

2-Hydr­oxy-N′-[(E)-(3-hydr­oxy-2-naphth­yl)methyl­ene]benzohydrazide

Abstract

In the title mol­ecule, C18H14N2O3, O—H(...)N and N—H(...)O hydrogen bonds influence the mol­ecular conformation; the benzene and naphthalene planes are inclined at a dihedral angle of 11.54 (5)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains running in the [01An external file that holds a picture, illustration, etc.
Object name is e-65-0o262-efi1.jpg] direction.

Related literature

For useful applications of salicyloyl hydrazide derivatives, see: Sumita et al. (1999 [triangle]). For the crystal structure of (E)-2-hydr­oxy-N′-(3-hydr­oxy-4-methoxy­benzyl­idene)benzohydrazide, see: Luo (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o262-scheme1.jpg

Experimental

Crystal data

  • C18H14N2O3
  • M r = 306.31
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o262-efi2.jpg
  • a = 21.124 (2) Å
  • b = 11.6212 (13) Å
  • c = 5.9826 (8) Å
  • V = 1468.6 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 (2) K
  • 0.32 × 0.18 × 0.15 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.970, T max = 0.986
  • 6099 measured reflections
  • 1422 independent reflections
  • 896 reflections with I > 2σ(I)
  • R int = 0.057

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.076
  • S = 1.04
  • 1422 reflections
  • 209 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.15 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: SMART (Siemens, 1996 [triangle]); cell refinement: SAINT (Siemens, 1996 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808044073/cv2501sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808044073/cv2501Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

supplementary crystallographic information

Comment

Salicyloyl hydrazide is an important organic intermediate, it can act as moulding board in inorganic complex (Sumita et al., 1999). In this paper, we present the title compound (I), which was synthesized by the reaction of 2-hydroxyl naphthaldehyde and salicyloyl hydrazide.

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the reported compound (Luo, 2007). In the crystal structure, the C8=N2 bond length is 1.279 (5) Å showing the double-bond character. The dihedral angle between the naphthalene ring and C8/N2/N1 is 10.14 (3) Å, the C1/N1/N2 and benzene ring form a dihedral angle of 6.70 (4) Å showing that intramolecular O—H···N and N—H···O hydrogen bonds (Table 1) influence the molecular conformation.

In the crystal, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into chains running in direction [01–1].

Experimental

Salicyloyl hydrazide (0.5 mmol) and freshly 2-hydroxyl naphthaldehyde (0.5 mmol) were mixed in 50 ml flash. After stirring 30 min at 353 K, the mixture then cooling slowly to room temperature and affording the title compound, then recrystallized from ethanol, affording the title compound as a green crystalline solid. Elemental analysis: calculated for C18H14N2O3: C 70.58, H 4.61, N 9.15%; found: C 70.53, H 4.55, N 9.24%.

Refinement

All H atoms were placed in geometrically idealized positions (N—H 0.86, O—H 0.82 and C—H=0.93 Å) and treated as riding, with Uiso(H) = 1.2 Ueq of the parent atom. In the absence of any significant anomalous scatterers in the molecule, the 1353 Friedel pairs were merged before the final refinement.

Figures

Fig. 1.
ORTEP drawing of the title molecule with atomic numbering scheme and displacement ellipsoids at 30% probability level.

Crystal data

C18H14N2O3Dx = 1.385 Mg m3
Mr = 306.31Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 1119 reflections
a = 21.124 (2) Åθ = 2.6–25.4°
b = 11.6212 (13) ŵ = 0.10 mm1
c = 5.9826 (8) ÅT = 298 K
V = 1468.6 (3) Å3Block, yellow
Z = 40.32 × 0.18 × 0.15 mm
F(000) = 640

Data collection

Bruker SMART CCD area-detector diffractometer1422 independent reflections
Radiation source: fine-focus sealed tube896 reflections with I > 2σ(I)
graphiteRint = 0.057
[var phi] and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −24→24
Tmin = 0.970, Tmax = 0.986k = −13→8
6099 measured reflectionsl = −7→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0012P)2 + 0.7621P] where P = (Fo2 + 2Fc2)/3
1422 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.22373 (16)0.9395 (3)0.7320 (6)0.0514 (10)
H10.21720.87130.78280.062*
N20.19138 (18)0.9753 (3)0.5434 (6)0.0536 (11)
O10.27673 (14)1.1075 (2)0.7748 (6)0.0703 (10)
O20.25278 (12)0.7725 (2)1.0077 (6)0.0574 (9)
H20.25260.71071.07390.086*
O30.16012 (13)1.1067 (3)0.2045 (6)0.0664 (10)
H30.17871.08920.31990.100*
C10.2649 (2)1.0079 (4)0.8375 (8)0.0504 (12)
C20.2955 (2)0.9611 (3)1.0404 (8)0.0447 (11)
C30.2891 (2)0.8497 (3)1.1229 (7)0.0441 (12)
C40.3185 (2)0.8179 (4)1.3196 (8)0.0544 (13)
H40.31350.74351.37400.065*
C50.3548 (2)0.8948 (5)1.4348 (9)0.0672 (15)
H50.37500.87181.56550.081*
C60.3618 (2)1.0054 (5)1.3596 (10)0.0718 (16)
H60.38631.05781.43920.086*
C70.3321 (2)1.0378 (4)1.1646 (10)0.0614 (14)
H70.33661.11301.11420.074*
C80.1536 (2)0.8994 (4)0.4641 (8)0.0546 (13)
H80.15070.82880.53630.066*
C90.1152 (2)0.9189 (4)0.2659 (8)0.0493 (12)
C100.1211 (2)1.0193 (4)0.1429 (8)0.0495 (12)
C110.0868 (2)1.0370 (4)−0.0549 (8)0.0560 (13)
H110.09141.1054−0.13390.067*
C120.0468 (2)0.9542 (4)−0.1312 (9)0.0607 (14)
H120.02550.9653−0.26560.073*
C130.0369 (2)0.8510 (4)−0.0089 (9)0.0548 (13)
C140.07102 (19)0.8331 (4)0.1920 (8)0.0511 (12)
C150.0568 (2)0.7320 (4)0.3138 (9)0.0656 (15)
H150.07800.71730.44700.079*
C160.0128 (2)0.6564 (5)0.2396 (11)0.0790 (19)
H160.00440.59090.32390.095*
C17−0.0202 (2)0.6734 (5)0.0415 (12)0.0771 (17)
H17−0.05000.6199−0.00670.093*
C18−0.0082 (2)0.7700 (4)−0.0809 (9)0.0686 (16)
H18−0.03010.7825−0.21360.082*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.053 (2)0.058 (2)0.043 (3)0.005 (2)−0.001 (2)0.022 (2)
N20.051 (2)0.070 (3)0.040 (2)0.016 (2)0.000 (2)0.017 (2)
O10.086 (2)0.0454 (18)0.079 (3)0.0026 (17)0.004 (2)0.0291 (19)
O20.076 (2)0.0427 (16)0.053 (2)−0.0038 (16)−0.012 (2)0.0166 (17)
O30.063 (2)0.081 (2)0.056 (3)−0.0053 (18)−0.0055 (19)0.029 (2)
C10.052 (3)0.049 (3)0.050 (3)0.007 (2)0.006 (3)0.012 (2)
C20.046 (3)0.043 (3)0.044 (3)0.005 (2)0.001 (2)0.009 (2)
C30.050 (3)0.042 (3)0.040 (3)0.000 (2)−0.001 (2)0.005 (2)
C40.060 (3)0.058 (3)0.045 (3)0.008 (3)0.001 (3)0.017 (3)
C50.062 (3)0.087 (4)0.053 (4)0.012 (3)−0.010 (3)0.003 (3)
C60.065 (3)0.073 (4)0.077 (4)−0.006 (3)−0.012 (3)−0.011 (3)
C70.066 (3)0.050 (3)0.068 (4)−0.002 (3)0.002 (3)0.007 (3)
C80.055 (3)0.062 (3)0.047 (3)0.013 (3)0.007 (3)0.018 (3)
C90.047 (3)0.063 (3)0.037 (3)0.011 (2)0.005 (2)0.014 (3)
C100.044 (3)0.068 (3)0.037 (3)0.007 (2)0.007 (3)0.016 (3)
C110.054 (3)0.075 (3)0.039 (3)0.011 (3)−0.001 (3)0.020 (3)
C120.059 (3)0.088 (4)0.035 (3)0.009 (3)0.000 (3)0.007 (3)
C130.049 (3)0.064 (3)0.051 (3)0.009 (3)0.009 (3)0.001 (3)
C140.049 (3)0.059 (3)0.046 (3)0.017 (2)0.006 (3)0.004 (3)
C150.056 (3)0.071 (3)0.070 (4)0.008 (3)0.000 (3)0.017 (3)
C160.069 (4)0.068 (4)0.100 (6)0.003 (3)0.001 (4)0.018 (4)
C170.068 (4)0.067 (4)0.096 (5)−0.003 (3)0.002 (4)0.001 (4)
C180.060 (3)0.079 (4)0.066 (4)0.007 (3)0.008 (3)−0.008 (4)

Geometric parameters (Å, °)

N1—C11.336 (5)C8—C91.455 (6)
N1—N21.383 (5)C8—H80.9300
N1—H10.8600C9—C101.386 (5)
N2—C81.280 (5)C9—C141.435 (5)
O1—C11.242 (5)C10—C111.403 (6)
O2—C31.366 (5)C11—C121.360 (6)
O2—H20.8200C11—H110.9300
O3—C101.359 (5)C12—C131.420 (6)
O3—H30.8200C12—H120.9300
C1—C21.479 (6)C13—C181.407 (6)
C2—C31.392 (5)C13—C141.417 (6)
C2—C71.395 (6)C14—C151.415 (6)
C3—C41.381 (6)C15—C161.354 (6)
C4—C51.364 (6)C15—H150.9300
C4—H40.9300C16—C171.389 (7)
C5—C61.370 (7)C16—H160.9300
C5—H50.9300C17—C181.364 (6)
C6—C71.377 (7)C17—H170.9300
C6—H60.9300C18—H180.9300
C7—H70.9300
C1—N1—N2121.8 (4)C10—C9—C14118.7 (4)
C1—N1—H1119.1C10—C9—C8120.9 (4)
N2—N1—H1119.1C14—C9—C8120.4 (4)
C8—N2—N1113.8 (4)O3—C10—C9122.7 (4)
C3—O2—H2109.5O3—C10—C11115.7 (4)
C10—O3—H3109.5C9—C10—C11121.6 (5)
O1—C1—N1122.9 (4)C12—C11—C10120.1 (5)
O1—C1—C2120.2 (5)C12—C11—H11120.0
N1—C1—C2116.9 (4)C10—C11—H11120.0
C3—C2—C7117.3 (4)C11—C12—C13121.1 (5)
C3—C2—C1126.2 (4)C11—C12—H12119.5
C7—C2—C1116.4 (4)C13—C12—H12119.5
O2—C3—C4120.5 (4)C18—C13—C14120.4 (5)
O2—C3—C2119.1 (4)C18—C13—C12120.4 (5)
C4—C3—C2120.5 (4)C14—C13—C12119.1 (5)
C5—C4—C3120.6 (5)C15—C14—C13116.8 (5)
C5—C4—H4119.7C15—C14—C9123.8 (5)
C3—C4—H4119.7C13—C14—C9119.4 (4)
C4—C5—C6120.6 (5)C16—C15—C14121.1 (5)
C4—C5—H5119.7C16—C15—H15119.5
C6—C5—H5119.7C14—C15—H15119.5
C5—C6—C7119.0 (5)C15—C16—C17122.1 (6)
C5—C6—H6120.5C15—C16—H16118.9
C7—C6—H6120.5C17—C16—H16118.9
C6—C7—C2122.0 (5)C18—C17—C16118.8 (6)
C6—C7—H7119.0C18—C17—H17120.6
C2—C7—H7119.0C16—C17—H17120.6
N2—C8—C9122.9 (4)C17—C18—C13120.8 (6)
N2—C8—H8118.6C17—C18—H18119.6
C9—C8—H8118.6C13—C18—H18119.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3—H3···N20.821.902.623 (5)146
N1—H1···O20.861.922.620 (4)137
O2—H2···O1i0.821.812.573 (4)155

Symmetry codes: (i) −x+1/2, y−1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2501).

References

  • Luo, Z.-G. (2007). Acta Cryst. E63, o3672.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Sumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography