PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m238.
Published online 2009 January 28. doi:  10.1107/S160053680900289X
PMCID: PMC2968220

Low-temperature redetermination of tribenzyl­chloridotin(IV)

Abstract

Compared to the previous studies [Ng (1997 [triangle]). Acta Cryst. C53, 56–58; Yin et al. (2005 [triangle]). Huaxue Shiji, 27, 295–296], the redetermined structure of the title compound, [Sn(C7H7)3Cl], exhibits a doubled c unit-cell parameter. There are two mol­ecules in the asymmetric unit, with both Sn and both Cl atoms having 3 site symmetry. The Sn atoms have distorted SnClC3 tetra­hedral geometries and the mol­ecules inter­act by way of short Sn(...)Cl bridges [Sn(...)Cl = 3.418 (2) and 3.475 (2) Å], thereby forming chains propagating in c.

Related literature

For the room-temperature structure of the title compound described in the R3 space group but with the unique c axis half as long, see: Ng (1997 [triangle]); Yin et al. (2005 [triangle]). For the direct synthesis of the title compound from metallic tin and benzyl chloride, see: Sisido et al. (1961 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m238-scheme1.jpg

Experimental

Crystal data

  • [Sn(C7H7)3Cl]
  • M r = 427.52
  • Trigonal, An external file that holds a picture, illustration, etc.
Object name is e-65-0m238-efi1.jpg
  • a = 16.7985 (2) Å
  • c = 11.6875 (2) Å
  • V = 2856.23 (6) Å3
  • Z = 6
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 100 (2) K
  • 0.40 × 0.08 × 0.06 mm

Data collection

  • Bruker SMART APEX diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.589, T max = 0.917
  • 9077 measured reflections
  • 2737 independent reflections
  • 2431 reflections with I > 2σ(I)
  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.074
  • S = 1.07
  • 2737 reflections
  • 139 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.53 e Å−3
  • Δρmin = −0.25 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1372 Friedel pairs
  • Flack parameter: −0.01 (4)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900289X/hb2901sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900289X/hb2901Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the University of Malaya for supporting this study.

supplementary crystallographic information

Comment

The room-temperature structure of tribenzyltin(IV) chloride, (I), has been described in the R3 space group but with the unique c-axis half as long [a = 16.942 (1), c = 5.9187 (4) Å] (Ng, 1997; Yin et al., 2005) as that found here. Presumably, the two independent studies missed the weak reflections along the c-axis. In the present low-temperature study of (I) (Fig. 1), the l = 2n + 1 reflections are generally weak but are unambiguously present. The crystal structure consists of [SnCI(C7H7)3] molecules (Tabl 1) linked axially by tin···chlorine bridges into a chain along the c-axis of the trigonal unit cell.

Experimental

Tribenzyltin chloride was prepared from metallic tin and benzyl chloride in water (Sisido et al., 1961) and was recrystallized from ethanol to yield colourless prisms of (I).

Refinement

The H atoms were placed in calculated positions [C—H 0.95–0.99 Å, Uiso(H) 1.2Ueq(C)], and were included in the refinement in the riding-model approximation.

Figures

Fig. 1.
The molecular structure of (I); displacement ellipsoids are drawn at the 70% probability level, and H atoms as spheres of arbitrary radius. Only symmetry-independent atoms are labeled.

Crystal data

[Sn(C7H7)3Cl]Dx = 1.491 Mg m3
Mr = 427.52Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 5172 reflections
Hall symbol: R 3θ = 2.4–28.3°
a = 16.7985 (2) ŵ = 1.48 mm1
c = 11.6875 (2) ÅT = 100 K
V = 2856.23 (6) Å3Prism, colorless
Z = 60.40 × 0.08 × 0.06 mm
F(000) = 1284

Data collection

Bruker SMART APEX diffractometer2737 independent reflections
Radiation source: fine-focus sealed tube2431 reflections with I > 2σ(I)
graphiteRint = 0.014
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→21
Tmin = 0.589, Tmax = 0.917k = −21→21
9077 measured reflectionsl = −15→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.074w = 1/[σ2(Fo2) + (0.0515P)2 + 0.375P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2737 reflectionsΔρmax = 0.53 e Å3
139 parametersΔρmin = −0.25 e Å3
1 restraintAbsolute structure: Flack (1983), 1372 Fridel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.01 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Sn10.33330.66670.500000 (15)0.01587 (10)
Sn20.33330.66671.00289 (2)0.01945 (10)
Cl10.33330.66670.29532 (14)0.0388 (4)
Cl20.33330.66670.79730 (13)0.0364 (4)
C10.4692 (2)0.7751 (2)0.5415 (3)0.0231 (6)
H1A0.48050.77300.62420.028*
H1B0.51490.76590.49880.028*
C20.4812 (2)0.8672 (2)0.5120 (3)0.0214 (6)
C30.5272 (2)0.9129 (2)0.4134 (3)0.0353 (7)
H30.55240.88580.36460.042*
C40.5369 (3)0.9971 (2)0.3847 (3)0.0475 (9)
H40.56861.02720.31670.057*
C50.5008 (3)1.0378 (2)0.4544 (4)0.0438 (8)
H50.50701.09540.43440.053*
C60.4552 (2)0.9929 (2)0.5546 (4)0.0361 (8)
H60.43051.02040.60340.043*
C70.4456 (2)0.9089 (2)0.5831 (3)0.0283 (7)
H70.41460.87910.65160.034*
C80.4652 (2)0.7841 (2)1.0378 (3)0.0269 (7)
H8A0.48280.78151.11800.032*
H8B0.51190.78310.98710.032*
C90.4632 (2)0.8710 (2)1.0191 (3)0.0259 (6)
C100.4869 (2)0.9179 (2)0.9159 (3)0.0417 (8)
H100.50760.89570.85460.050*
C110.4811 (3)0.9968 (2)0.9002 (4)0.0531 (10)
H110.49661.02710.82810.064*
C120.4528 (2)1.0317 (2)0.9886 (4)0.0482 (9)
H120.45001.08630.97840.058*
C130.4288 (2)0.9860 (2)1.0914 (4)0.0401 (8)
H130.40911.00911.15270.048*
C140.4331 (2)0.9067 (2)1.1065 (3)0.0311 (7)
H140.41510.87561.17790.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Sn10.01588 (11)0.01588 (11)0.01586 (17)0.00794 (5)0.0000.000
Sn20.02122 (12)0.02122 (12)0.01592 (18)0.01061 (6)0.0000.000
Cl10.0498 (6)0.0498 (6)0.0167 (5)0.0249 (3)0.0000.000
Cl20.0470 (6)0.0470 (6)0.0152 (5)0.0235 (3)0.0000.000
C10.0191 (14)0.0214 (14)0.0274 (14)0.0092 (11)−0.0005 (11)0.0038 (11)
C20.0192 (13)0.0178 (13)0.0233 (13)0.0062 (11)−0.0037 (11)0.0006 (10)
C30.0457 (19)0.0255 (15)0.0277 (14)0.0125 (14)0.0090 (14)0.0008 (11)
C40.070 (2)0.0274 (16)0.0344 (19)0.0163 (18)0.0067 (16)0.0085 (13)
C50.055 (2)0.0231 (15)0.050 (2)0.0179 (17)−0.0140 (17)−0.0011 (14)
C60.0319 (18)0.0280 (15)0.048 (2)0.0150 (14)−0.0070 (14)−0.0085 (14)
C70.0225 (14)0.0270 (15)0.0302 (16)0.0086 (12)−0.0012 (11)−0.0059 (12)
C80.0231 (15)0.0284 (16)0.0276 (15)0.0116 (13)0.0011 (12)−0.0012 (12)
C90.0246 (14)0.0281 (15)0.0208 (12)0.0100 (12)−0.0025 (11)−0.0030 (11)
C100.047 (2)0.0328 (17)0.0280 (15)0.0066 (16)0.0013 (14)0.0007 (13)
C110.063 (2)0.0353 (19)0.0365 (19)0.0064 (18)−0.0148 (17)0.0104 (15)
C120.049 (2)0.0255 (16)0.063 (2)0.0138 (17)−0.0256 (18)−0.0023 (16)
C130.0374 (18)0.0338 (18)0.050 (2)0.0181 (15)−0.0076 (15)−0.0067 (15)
C140.0300 (16)0.0278 (15)0.0299 (16)0.0103 (13)0.0012 (12)−0.0008 (12)

Geometric parameters (Å, °)

Sn1—C1i2.146 (3)C5—C61.396 (5)
Sn1—C12.146 (3)C5—H50.9500
Sn1—C1ii2.146 (3)C6—C71.379 (5)
Sn1—Cl12.392 (2)C6—H60.9500
Sn1—Cl23.475 (2)C7—H70.9500
Sn2—C8i2.143 (3)C8—C91.494 (5)
Sn2—C82.143 (3)C8—H8A0.9900
Sn2—C8ii2.143 (3)C8—H8B0.9900
Sn2—Cl22.403 (2)C9—C101.387 (4)
Sn2—Cl1iii3.418 (2)C9—C141.400 (4)
C1—C21.497 (4)C10—C111.389 (5)
C1—H1A0.9900C10—H100.9500
C1—H1B0.9900C11—C121.383 (5)
C2—C31.387 (4)C11—H110.9500
C2—C71.398 (4)C12—C131.373 (5)
C3—C41.381 (4)C12—H120.9500
C3—H30.9500C13—C141.381 (5)
C4—C51.383 (5)C13—H130.9500
C4—H40.9500C14—H140.9500
C1i—Sn1—C1115.06 (6)C5—C4—H4119.8
C1i—Sn1—C1ii115.06 (7)C4—C5—C6119.0 (3)
C1—Sn1—C1ii115.06 (6)C4—C5—H5120.5
C1i—Sn1—Cl1103.05 (9)C6—C5—H5120.5
C1—Sn1—Cl1103.05 (9)C7—C6—C5120.5 (3)
C1ii—Sn1—Cl1103.05 (9)C7—C6—H6119.8
C1i—Sn1—Cl276.95 (9)C5—C6—H6119.8
C1—Sn1—Cl276.95 (9)C6—C7—C2120.6 (3)
C1ii—Sn1—Cl276.95 (9)C6—C7—H7119.7
Cl1—Sn1—Cl2180.0C2—C7—H7119.7
C8i—Sn2—C8116.46 (6)C9—C8—Sn2110.7 (2)
C8i—Sn2—C8ii116.46 (6)C9—C8—H8A109.5
C8—Sn2—C8ii116.46 (6)Sn2—C8—H8A109.5
C8i—Sn2—Cl2100.98 (9)C9—C8—H8B109.5
C8—Sn2—Cl2100.98 (9)Sn2—C8—H8B109.5
C8ii—Sn2—Cl2100.98 (9)H8A—C8—H8B108.1
C8i—Sn2—Cl1iii79.02 (9)C10—C9—C14117.0 (3)
C8—Sn2—Cl1iii79.02 (9)C10—C9—C8122.9 (3)
C8ii—Sn2—Cl1iii79.02 (9)C14—C9—C8120.1 (3)
Cl2—Sn2—Cl1iii180.0C9—C10—C11121.4 (3)
Sn2—Cl2—Sn1180.0C9—C10—H10119.3
C2—C1—Sn1111.2 (2)C11—C10—H10119.3
C2—C1—H1A109.4C12—C11—C10120.5 (3)
Sn1—C1—H1A109.4C12—C11—H11119.7
C2—C1—H1B109.4C10—C11—H11119.7
Sn1—C1—H1B109.4C13—C12—C11118.9 (3)
H1A—C1—H1B108.0C13—C12—H12120.5
C3—C2—C7118.4 (3)C11—C12—H12120.5
C3—C2—C1120.9 (3)C12—C13—C14120.6 (3)
C7—C2—C1120.7 (3)C12—C13—H13119.7
C4—C3—C2121.1 (3)C14—C13—H13119.7
C4—C3—H3119.5C13—C14—C9121.6 (3)
C2—C3—H3119.5C13—C14—H14119.2
C3—C4—C5120.5 (3)C9—C14—H14119.2
C3—C4—H4119.8
C1i—Sn1—C1—C2−41.4 (3)C8i—Sn2—C8—C9−31.7 (3)
C1ii—Sn1—C1—C2−178.70 (16)C8ii—Sn2—C8—C9−175.18 (15)
Cl1—Sn1—C1—C269.9 (2)Cl2—Sn2—C8—C976.6 (2)
Cl2—Sn1—C1—C2−110.1 (2)Cl1iii—Sn2—C8—C9−103.4 (2)
Sn1—C1—C2—C3−101.4 (3)Sn2—C8—C9—C10−92.7 (3)
Sn1—C1—C2—C778.1 (3)Sn2—C8—C9—C1484.8 (3)
C7—C2—C3—C4−0.7 (5)C14—C9—C10—C110.1 (5)
C1—C2—C3—C4178.8 (3)C8—C9—C10—C11177.7 (3)
C2—C3—C4—C50.0 (5)C9—C10—C11—C121.2 (5)
C3—C4—C5—C60.6 (6)C10—C11—C12—C13−1.3 (5)
C4—C5—C6—C7−0.5 (5)C11—C12—C13—C140.2 (5)
C5—C6—C7—C2−0.2 (5)C12—C13—C14—C91.1 (5)
C3—C2—C7—C60.8 (5)C10—C9—C14—C13−1.2 (5)
C1—C2—C7—C6−178.7 (3)C8—C9—C14—C13−178.9 (3)

Symmetry codes: (i) −y+1, xy+1, z; (ii) −x+y, −x+1, z; (iii) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2901).

References

  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Ng, S. W. (1997). Acta Cryst. C53, 56–58.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sisido, K., Takeda, Y. & Kinugawa, Z. (1961). J. Am. Chem. Soc.83, 538–541.
  • Westrip, S. P. (2009). publCIF In preparation.
  • Yin, H.-D., Li, K.-Z. & Hong, M. (2005). Huaxue Shiji, 27, 295–296, 310.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography