PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m165–m166.
Published online 2009 January 10. doi:  10.1107/S1600536809000464
PMCID: PMC2968218

1,3-Bis(2-thienylmeth­yl)-4,5-dihydro­imidazolium trichlorido(η6-p-cymene)ruthenate(II)

Abstract

The asymmetric unit of the title compound, (C13H15N2S2)[RuCl3(C10H14)], contains a 1,3-(2-thienylmeth­yl)-4,5-dihydro­imidazolium cation and a trichlorido(η 6-p-cymene)ruthenate(II) anion. The thio­phene rings of the cation are disordered by an 180° rotation about the thio­phene–CH2 bonds with occupancies of 0.847 (5)/0.153 (5) and 0.700 (5)/0.300 (5), respectively. The Ru atom exhibits a distorted octa­hedral coordination with the benzene ring of the p-cymene ligand formally occupying three sites and three Cl atoms occupying the other three sites. The short C—N bond lengths in the imidazoline ring indicate partial electron delocalization within the N—C—N fragment. Cation and anions are connected through five inter­molecular C—H(...)Cl hydrogen bonds and one C—H(...)π hydrogen bond, forming a three-dimensional hydrogen-bonded network.

Related literature

For the synthesis, see: Yaşar et al. (2008 [triangle]). Özdemir et al. (2008 [triangle], 2007 [triangle], 2005 [triangle]). For general background, see: Herrmann et al. (1995 [triangle]); Herrmann (2002 [triangle]); Arduengo & Krafczyc (1998 [triangle]). For related compounds, see: Arslan et al. (2007 [triangle], 2005a [triangle],b [triangle]) and references therein; Sonar et al. (2004 [triangle], 2005a [triangle],b [triangle]); Wagner et al. (2006a [triangle],b [triangle]); Crundwell et al. (2002 [triangle]); Linehan et al. (2003 [triangle]); Liu et al. (2004 [triangle]); Navarro et al. (2006 [triangle]); Therrien et al. (2004 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m165-scheme1.jpg

Experimental

Crystal data

  • (C13H15N2S2)[RuCl3(C10H14)]
  • M r = 605.02
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m165-efi1.jpg
  • a = 9.910 (2) Å
  • b = 11.600 (2) Å
  • c = 12.659 (3) Å
  • α = 84.95 (3)°
  • β = 67.05 (3)°
  • γ = 74.14 (3)°
  • V = 1288.8 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.10 mm−1
  • T = 153 (2) K
  • 0.48 × 0.19 × 0.17 mm

Data collection

  • Rigaku AFC-8S Mercury CCD diffractometer
  • Absorption correction: multi-scan (REQUAB; Jacobson, 1998 [triangle]) T min = 0.621, T max = 0.836
  • 11095 measured reflections
  • 4557 independent reflections
  • 4062 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.084
  • S = 1.13
  • 4557 reflections
  • 285 parameters
  • H-atom parameters constrained
  • Δρmax = 0.43 e Å−3
  • Δρmin = −0.68 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2006 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000464/hg2465sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000464/hg2465Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Technological and Scientific Research Council of Turkey TÜBİTAK-CNRS [TBAG-U/181 (106 T716)] and İnönü University Research Fund (BAP: 2008-Güdümlü3) for financial support.

supplementary crystallographic information

Comment

Metal-carbene compounds, such as N-heterocyclic carbene palladium and ruthenium complexes, are important catalysts that have a wide range of applications such as Suzuki-Miyaura, Sonogashira, Stille and Heck reactions (Herrmann 2002; Herrmann et al., 1995; Navarro et al., 2006; Arduengo & Krafczyc, 1998).

In previous papers, we have described the synthesis, characterization and applications of palladium, platinum and ruthenium N-heterocyclic carbene complexes as catalysts (Yaşar et al., 2008; Arslan et al., 2007, 2005a, 2005b, and references therein; Özdemir et al., 2008, 2007, 2005, and references therein). In view of these important attributes of N-heterocyclic carbene derivatives, we report here the crystal structure of one of them. The title compound consists 1,3-bis(thiophen-2-ylmethyl)-4,5-dihydro-1H-imidazolium cation and a trichloro(η6-p-cymene) ruthenium(II) anion. The molecular structure of the title compound, (I), is depicted in Fig. 1. Cation and anion groups are connected with five intermolecular C—H···Cl hydrogen bonds and one C—H···π hydrogen bond, forming a three-dimensional hydrogen-bonding network (Fig. 2).

A flip disorder of both thiophene rings in 1,3-bis(thiophen-2-ylmethyl)-4,5-dihydro-1H-imidazolium cation is observed. There are two positions of both thiophene rings, rotated by 180°. The crystal structure of the cation contains four disordered atoms, S1, S2, C16, and C21. The site occupancy factors refined to 0.847 (5) and 0.153 (5) for the S1—C15—C16—C17—C18 ring, and 0.700 (5) and 0.300 (5) for the S2—C20—C21—C22—C23 ring. A similar thiophene ring disorder has been observed in some thiophene derivatives, such as (Z)-3-(1-methyl-1H-indol-3-yl)-2-(thiophen-3-yl)acrylonitrile (Sonar et al., 2004), (Z)-2-(3-thienyl)-3-(3,4,5-trimethoxyphenyl)acrylonitrile (Sonar et al., 2005a), (Z)-3-(1H-Indol-3-yl)-2-(3-thienyl)acrylonitrile and (Z)-3-[1-(4-tert-butylbenzyl)-1H-indol-3-yl]-2-(3-thienyl)acrylonitrile (Sonar et al., 2005b), 1,2-di-3-thienyl-2-hydroxyethanone(3,3-thenoin) (Crundwell et al., 2002), 3-[2-(anthracen-9-yl)ethenyl] thiophene, (Wagner et al., 2006a), 2,5-bis(2-cyano-2-thienylvinyl)thiophene (Wagner et al., 2006b), and 1,4-diphenyl-2,3-dithien-3-ylcyclopentadien-1-one (Linehan et al., 2003). In addition, all thiophene rings in the cation are almost planar; the maximum deviations from the least squares planes are 0.019 (4)Å for C16 and 0.006 (6)Å for C22.

The coordination geometry of ruthenium is pseudooctahedral, with an average Ru—Cl bond distance of 2.430Å. The ruthenium atom exhibits a distorted octahedral coordination with the benzene ring of the p-cymene ligand formally occupying three sites and three chloride atoms occupying other three sites. The distance between the centroid of the p-cymene ring and ruthenium is 1.6493 (15) Å, which is longer than that reported in other ruthenium compounds (Liu et al., 2004; Therrien et al., 2004). All the other bond lengths in (I) are in normal ranges (Allen et al., 1987).

The imidazolidine ring is almost planar, the deviations from planarity of ring are N1 0.002 (3), C11 0.001 (4), N2 0.004 (3), C12 0.005 (4), C13 0.004 (4)Å. The some C—N bond lengths (N1—C11 = 1.307 (4)Å and N2—C11 = 1.302 (4)Å) for the imidazolidine ring are shorter than the average single C—N bond length of 1.48Å, thus showing double bond character in these C—N bonds. The other CN bonds length (N1—C13 1.458 (5), N1—C14 1.462 (4), N2—C19 1.460 (4) and N2—C12 1.466 (4)Å) is agree with 1.48Å C—N single bond lengths. This information indicates a partial electron delocalization within the N1—C11—N2 fragment.

The crystal packing is shown in Fig. 2. Five intermolecular C—H···Cl hydrogen bonds link the molecules of (I) and generate a three-dimensional hydrogen bonded framework. In addition, a C14 (x, y, z)-H···π (S2—C20—C21—C22—C23, thiophene ring; 1 - x, 1 - y, 2 - z) hydrogen bond is observed in the title compound, Table 1.

Experimental

A suspension of 1,3-bis(thiophen-2ylmethyl)-,4,5-dihydro-1H-imidazolium chloride (1.1 mmol), Cs2CO3 (1.2 mmol) and [RuCl2(p-cymene)] (0.5 mmol) was heated under reflux in degassed toluene (20 ml) for 7 h (Fig. 3). The reaction mixture was then filtered while hot, and the volume was reduced to about 10 ml before addition of n-hexane (15 ml). The precipitate formed was crystallized from CH2Cl2: hexane (5:10 ml) to give the complex as red-brown crystals. Yields: 0.208 g, 69%. M.p.: 227–228°C. 1H NMR(CDCl3) δ: 1.39 (d, 6H, J = 6.9 Hz, CH3(C6H4)CH(CH3)2), 2.29 (s, 3H, CH3(C6H4)CH(CH3)2), 3.21 (m, 1H, CH3(C6H4)CH(CH3)2), 3.79 (s, 4H, NCH2CH2N), 4.12 (s, 4H, CH2C4H3S), 5.29 and 5.58 (d, 4H, J = 5.8 Hz, CH3(C6H4)CH(CH3)2), 7.03–7.68 (m, 6H, C4H3S), 8.99 (s, 1H, 2-CH). 13C NMR (CDCl3) δ: 18.6 (CH3(C6H4)CH(CH3)2), 22.3 (CH3(C6H4)CH(CH3)2), 30.8 (CH3(C6H4)CH(CH3)2), 47.0 (NCH2CH2N), 47.1 (CH2C4H3S), 79.6, 81.8, 96.5 and 100.8 (CH3(C6H4)CH(CH3)2), 126.7, 127.5, 129.1 and 135.2 (C4H3S), 159.3 (2-CH). Anal. Calc. for C23H29S2N2RuCl3: C, 45.66; H, 4.83; N, 4.63%. Found: C, 45.71; H, 4.89; N, 4.69%.

Refinement

All H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, and Uiso(H) = 1.5Ueq(C) of the attached C atom for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A packing diagram for (I). Symmetry: H19I, H14I, H11D, -x, 1 - y, 2 - z; H23A, -x, 2 - y, 2 - z; H23C, 1 + x, -1 + y, -1 + z; H19K, H14K, H11E, 1 + x, y,-1 + z; H19F, Cl1A, Cl2A, 1 - x,1 - y,1 - z.
Fig. 3.
Synthesis of the title compound.

Crystal data

(C13H15N2S2)[RuCl3(C10H14)]Z = 2
Mr = 605.02F(000) = 616
Triclinic, P1Dx = 1.559 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.910 (2) ÅCell parameters from 5195 reflections
b = 11.600 (2) Åθ = 3.3–26.4°
c = 12.659 (3) ŵ = 1.10 mm1
α = 84.95 (3)°T = 153 K
β = 67.05 (3)°Rod, red
γ = 74.14 (3)°0.48 × 0.19 × 0.17 mm
V = 1288.8 (6) Å3

Data collection

Rigaku AFC-8S Mercury CCD diffractometer4557 independent reflections
Radiation source: Sealed Tube4062 reflections with I > 2σ(I)
Graphite MonochromatorRint = 0.019
Detector resolution: 14.6306 pixels mm-1θmax = 25.2°, θmin = 3.3°
ω scansh = −11→11
Absorption correction: multi-scan (Jacobson, 1998)k = −11→13
Tmin = 0.621, Tmax = 0.836l = −15→15
11095 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.13w = 1/[σ2(Fo2) + (0.0406P)2 + 0.9404P] where P = (Fo2 + 2Fc2)/3
4557 reflections(Δ/σ)max = 0.001
285 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = −0.68 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Ru1−0.02777 (3)0.69238 (2)0.639788 (19)0.03323 (9)
Cl1−0.10558 (9)0.78990 (7)0.82284 (6)0.04448 (19)
Cl20.08996 (10)0.51572 (7)0.72233 (7)0.04740 (19)
Cl3−0.26047 (9)0.62550 (8)0.71790 (7)0.0506 (2)
C10.1893 (4)0.7262 (3)0.5295 (3)0.0484 (8)
C20.1573 (4)0.6370 (3)0.4777 (3)0.0462 (8)
H20.23100.56100.45500.055*
C30.0226 (4)0.6570 (4)0.4593 (3)0.0512 (8)
H30.00580.59570.42350.061*
C4−0.0892 (4)0.7679 (4)0.4935 (3)0.0534 (9)
C5−0.0618 (5)0.8573 (3)0.5467 (3)0.0559 (9)
H5−0.13630.93270.57050.067*
C60.0761 (4)0.8346 (3)0.5644 (3)0.0510 (8)
H60.09240.89530.60150.061*
C70.3370 (5)0.6951 (5)0.5491 (4)0.0721 (12)
H70.34890.61580.57920.087*
C80.4683 (7)0.6885 (10)0.4361 (5)0.168 (4)
H8A0.46000.76590.40190.251*
H8B0.46710.63160.38600.251*
H8C0.56170.66360.44840.251*
C90.3364 (6)0.7746 (6)0.6359 (4)0.0889 (16)
H9A0.42340.74110.65540.133*
H9B0.24550.78110.70340.133*
H9C0.33980.85270.60460.133*
C10−0.2363 (5)0.7879 (5)0.4785 (4)0.0864 (15)
H10A−0.22310.81160.40130.130*
H10B−0.31190.84990.53110.130*
H10C−0.26830.71510.49370.130*
S10.29307 (13)0.18189 (11)0.86238 (11)0.0636 (4)0.847 (5)
C16'0.29307 (13)0.18189 (11)0.86238 (11)0.0636 (4)0.153 (5)
H16'0.20490.24870.88030.076*0.153 (5)
S20.13328 (18)0.84868 (10)0.98665 (14)0.0673 (5)0.700 (5)
C21'0.13328 (18)0.84868 (10)0.98665 (14)0.0673 (5)0.300 (5)
H21'0.14750.87040.90880.081*0.300 (5)
N10.4121 (3)0.3556 (2)0.9546 (2)0.0456 (6)
N20.2449 (3)0.5262 (2)0.9644 (2)0.0396 (6)
C110.2748 (3)0.4218 (3)1.0096 (3)0.0374 (6)
H110.20290.39591.07690.045*
C120.3763 (4)0.5391 (3)0.8622 (3)0.0561 (9)
H12A0.41190.60540.87110.067*
H12B0.35250.55010.79480.067*
C130.4936 (5)0.4194 (3)0.8565 (3)0.0631 (10)
H13A0.52380.37660.78600.076*
H13B0.58190.43150.86330.076*
C140.4669 (4)0.2283 (3)0.9737 (3)0.0473 (8)
H14A0.41100.21051.05150.057*
H14B0.57180.21120.96310.057*
C150.4510 (4)0.1486 (3)0.8940 (3)0.0438 (7)
S1'0.5553 (4)0.0368 (3)0.8423 (3)0.0759 (12)0.153 (5)
C160.5553 (4)0.0368 (3)0.8423 (3)0.0759 (12)0.847 (5)
H160.65340.00290.84560.091*0.847 (5)
C170.4850 (6)−0.0147 (4)0.7846 (4)0.0743 (12)
H170.5312−0.09190.74670.089*
C180.3504 (6)0.0533 (4)0.7880 (4)0.0732 (12)
H180.29250.03070.75150.088*
C190.1011 (4)0.6183 (3)1.0051 (3)0.0409 (7)
H19A0.02490.58441.06100.049*
H19B0.07010.64380.94190.049*
C200.1103 (3)0.7249 (3)1.0576 (3)0.0407 (7)
S2'0.0919 (3)0.7370 (2)1.18444 (19)0.0656 (8)0.300 (5)
C210.0919 (3)0.7370 (2)1.18444 (19)0.0656 (8)0.700 (5)
H210.07620.67961.24450.079*0.700 (5)
C220.1046 (5)0.8587 (6)1.1876 (5)0.0860 (17)
H220.09930.89251.25610.103*
C230.1235 (5)0.9205 (3)1.0935 (5)0.0765 (14)
H230.13101.00171.08870.092*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ru10.04018 (15)0.03358 (14)0.03059 (14)−0.01658 (10)−0.01405 (10)0.00217 (9)
Cl10.0592 (5)0.0374 (4)0.0377 (4)−0.0148 (3)−0.0163 (3)−0.0067 (3)
Cl20.0554 (5)0.0370 (4)0.0484 (4)−0.0104 (3)−0.0204 (4)0.0055 (3)
Cl30.0483 (4)0.0661 (5)0.0460 (4)−0.0327 (4)−0.0158 (3)0.0045 (4)
C10.0502 (19)0.064 (2)0.0352 (16)−0.0304 (17)−0.0113 (14)0.0064 (15)
C20.0491 (18)0.057 (2)0.0325 (15)−0.0231 (16)−0.0090 (13)−0.0027 (14)
C30.063 (2)0.074 (2)0.0285 (15)−0.0371 (19)−0.0185 (15)0.0043 (15)
C40.059 (2)0.072 (2)0.0411 (17)−0.0304 (19)−0.0257 (16)0.0210 (17)
C50.077 (3)0.0430 (18)0.0461 (19)−0.0207 (17)−0.0225 (18)0.0171 (15)
C60.072 (2)0.0484 (19)0.0451 (18)−0.0386 (18)−0.0222 (17)0.0124 (15)
C70.052 (2)0.115 (4)0.059 (2)−0.040 (2)−0.0186 (18)−0.004 (2)
C80.075 (4)0.359 (14)0.081 (4)−0.099 (6)−0.003 (3)−0.044 (6)
C90.079 (3)0.136 (5)0.076 (3)−0.051 (3)−0.040 (3)−0.002 (3)
C100.072 (3)0.131 (5)0.073 (3)−0.032 (3)−0.046 (2)0.026 (3)
S10.0542 (7)0.0669 (8)0.0728 (8)−0.0065 (5)−0.0317 (6)−0.0088 (6)
C16'0.0542 (7)0.0669 (8)0.0728 (8)−0.0065 (5)−0.0317 (6)−0.0088 (6)
S20.1003 (11)0.0355 (6)0.0966 (11)−0.0253 (6)−0.0681 (9)0.0179 (6)
C21'0.1003 (11)0.0355 (6)0.0966 (11)−0.0253 (6)−0.0681 (9)0.0179 (6)
N10.0445 (15)0.0354 (14)0.0491 (15)−0.0070 (12)−0.0116 (12)−0.0012 (12)
N20.0473 (14)0.0315 (13)0.0384 (13)−0.0116 (11)−0.0141 (11)0.0016 (10)
C110.0430 (16)0.0340 (15)0.0372 (15)−0.0124 (13)−0.0158 (13)0.0010 (12)
C120.060 (2)0.050 (2)0.0482 (19)−0.0202 (17)−0.0080 (17)0.0082 (16)
C130.060 (2)0.051 (2)0.059 (2)−0.0159 (18)−0.0004 (18)−0.0002 (18)
C140.0436 (17)0.0380 (17)0.0561 (19)0.0002 (14)−0.0208 (15)−0.0042 (15)
C150.0430 (17)0.0376 (16)0.0485 (18)−0.0077 (13)−0.0172 (14)0.0023 (14)
S1'0.092 (2)0.0512 (17)0.090 (2)−0.0105 (15)−0.0439 (19)−0.0045 (15)
C160.092 (2)0.0512 (17)0.090 (2)−0.0105 (15)−0.0439 (19)−0.0045 (15)
C170.097 (3)0.053 (2)0.068 (3)−0.021 (2)−0.023 (2)−0.011 (2)
C180.095 (3)0.075 (3)0.070 (3)−0.038 (3)−0.044 (3)0.005 (2)
C190.0448 (17)0.0319 (15)0.0511 (18)−0.0088 (13)−0.0242 (14)−0.0002 (13)
C200.0374 (15)0.0326 (15)0.0533 (18)−0.0059 (12)−0.0197 (14)−0.0032 (13)
S2'0.0721 (15)0.0671 (15)0.0606 (13)−0.0293 (11)−0.0207 (11)0.0003 (10)
C210.0721 (15)0.0671 (15)0.0606 (13)−0.0293 (11)−0.0207 (11)0.0003 (10)
C220.060 (3)0.115 (4)0.082 (3)−0.020 (3)−0.015 (2)−0.053 (3)
C230.067 (3)0.0316 (18)0.133 (5)−0.0068 (18)−0.041 (3)−0.013 (2)

Geometric parameters (Å, °)

Ru1—C62.140 (3)C10—H10C0.9599
Ru1—C22.154 (3)S1—C151.700 (3)
Ru1—C52.173 (3)S2—C201.647 (3)
Ru1—C12.180 (3)N1—C111.307 (4)
Ru1—C32.191 (3)N1—C131.458 (5)
Ru1—C42.207 (3)N1—C141.462 (4)
Ru1—Cl12.4157 (11)N2—C111.302 (4)
Ru1—Cl22.4329 (11)N2—C191.460 (4)
Ru1—Cl32.4417 (11)N2—C121.466 (4)
C1—C61.406 (5)C11—H110.9600
C1—C21.435 (5)C12—C131.534 (5)
C1—C71.521 (5)C12—H12A0.9600
C2—C31.398 (5)C12—H12B0.9600
C2—H20.9600C13—H13A0.9600
C3—C41.419 (6)C13—H13B0.9600
C3—H30.9600C14—C151.505 (5)
C4—C51.422 (5)C14—H14A0.9600
C4—C101.495 (5)C14—H14B0.9600
C5—C61.421 (5)C15—S1'1.438 (4)
C5—H50.9600S1'—H160.960 (3)
C6—H60.9600C17—C181.338 (7)
C7—C91.492 (6)C17—H170.9600
C7—C81.502 (7)C18—H180.9600
C7—H70.9600C19—C201.495 (4)
C8—H8A0.9599C19—H19A0.9600
C8—H8B0.9599C19—H19B0.9600
C8—H8C0.9599C20—S2'1.558 (4)
C9—H9A0.9599S2'—H210.960 (2)
C9—H9B0.9599C22—C231.310 (7)
C9—H9C0.9599C22—H220.9600
C10—H10A0.9599C23—H230.9600
C10—H10B0.9599
C6—Ru1—C268.59 (14)Ru1—C6—H6128.9
C6—Ru1—C538.46 (15)C9—C7—C8113.3 (5)
C2—Ru1—C580.93 (15)C9—C7—C1113.7 (4)
C6—Ru1—C137.98 (14)C8—C7—C1109.7 (4)
C2—Ru1—C138.66 (13)C9—C7—H7106.5
C5—Ru1—C169.25 (15)C8—C7—H7106.5
C6—Ru1—C381.08 (14)C1—C7—H7106.5
C2—Ru1—C337.52 (13)C7—C8—H8A109.5
C5—Ru1—C368.20 (15)C7—C8—H8B109.5
C1—Ru1—C369.15 (13)H8A—C8—H8B109.5
C6—Ru1—C468.92 (14)C7—C8—H8C109.5
C2—Ru1—C468.06 (14)H8A—C8—H8C109.5
C5—Ru1—C437.88 (15)H8B—C8—H8C109.5
C1—Ru1—C481.91 (13)C7—C9—H9A109.5
C3—Ru1—C437.65 (15)C7—C9—H9B109.5
C6—Ru1—Cl186.77 (10)H9A—C9—H9B109.5
C2—Ru1—Cl1144.83 (9)C7—C9—H9C109.5
C5—Ru1—Cl195.39 (11)H9A—C9—H9C109.5
C1—Ru1—Cl1107.28 (10)H9B—C9—H9C109.5
C3—Ru1—Cl1163.52 (11)C4—C10—H10A109.5
C4—Ru1—Cl1126.94 (11)C4—C10—H10B109.5
C6—Ru1—Cl2124.11 (11)H10A—C10—H10B109.5
C2—Ru1—Cl287.76 (11)C4—C10—H10C109.5
C5—Ru1—Cl2162.10 (11)H10A—C10—H10C109.5
C1—Ru1—Cl293.29 (10)H10B—C10—H10C109.5
C3—Ru1—Cl2110.15 (11)C11—N1—C13110.3 (3)
C4—Ru1—Cl2146.86 (11)C11—N1—C14125.0 (3)
Cl1—Ru1—Cl285.88 (4)C13—N1—C14123.6 (3)
C6—Ru1—Cl3147.20 (11)C11—N2—C19126.2 (3)
C2—Ru1—Cl3126.23 (9)C11—N2—C12110.5 (3)
C5—Ru1—Cl3110.17 (12)C19—N2—C12123.3 (3)
C1—Ru1—Cl3164.68 (9)N2—C11—N1113.6 (3)
C3—Ru1—Cl396.15 (10)N2—C11—H11123.2
C4—Ru1—Cl388.90 (10)N1—C11—H11123.2
Cl1—Ru1—Cl388.04 (4)N2—C12—C13102.5 (3)
Cl2—Ru1—Cl387.71 (4)N2—C12—H12A111.3
C6—C1—C2116.7 (3)C13—C12—H12A111.3
C6—C1—C7124.6 (4)N2—C12—H12B111.3
C2—C1—C7118.6 (4)C13—C12—H12B111.3
C6—C1—Ru169.44 (19)H12A—C12—H12B109.2
C2—C1—Ru169.67 (19)N1—C13—C12103.2 (3)
C7—C1—Ru1128.6 (3)N1—C13—H13A111.1
C3—C2—C1122.3 (3)C12—C13—H13A111.1
C3—C2—Ru172.69 (19)N1—C13—H13B111.1
C1—C2—Ru171.67 (19)C12—C13—H13B111.1
C3—C2—H2118.9H13A—C13—H13B109.1
C1—C2—H2118.9N1—C14—C15112.6 (3)
Ru1—C2—H2129.3N1—C14—H14A109.1
C2—C3—C4120.1 (3)C15—C14—H14A109.1
C2—C3—Ru169.79 (18)N1—C14—H14B109.1
C4—C3—Ru171.78 (19)C15—C14—H14B109.1
C2—C3—H3119.9H14A—C14—H14B107.8
C4—C3—H3119.9S1'—C15—C14126.7 (3)
Ru1—C3—H3131.2S1'—C15—S1112.4 (3)
C3—C4—C5118.9 (3)C14—C15—S1120.8 (2)
C3—C4—C10120.4 (4)C15—S1'—H16126.4 (3)
C5—C4—C10120.7 (4)C18—C17—H17122.6
C3—C4—Ru170.57 (19)C17—C18—H18123.4
C5—C4—Ru169.77 (19)N2—C19—C20112.8 (3)
C10—C4—Ru1129.5 (3)N2—C19—H19A109.0
C6—C5—C4119.9 (4)C20—C19—H19A109.0
C6—C5—Ru169.50 (19)N2—C19—H19B109.0
C4—C5—Ru172.4 (2)C20—C19—H19B109.0
C6—C5—H5120.1H19A—C19—H19B107.8
C4—C5—H5120.1C19—C20—S2'125.7 (3)
Ru1—C5—H5130.7C19—C20—S2122.6 (3)
C1—C6—C5122.1 (3)S2'—C20—S2111.7 (2)
C1—C6—Ru172.58 (19)C20—S2'—H21129.3 (2)
C5—C6—Ru172.0 (2)C23—C22—H22121.2
C1—C6—H6119.0C22—C23—H23122.8
C5—C6—H6119.0
C2—Ru1—C1—C6130.7 (3)Cl2—Ru1—C4—C5−150.0 (2)
C5—Ru1—C1—C628.9 (2)Cl3—Ru1—C4—C5125.9 (2)
C3—Ru1—C1—C6102.6 (2)C6—Ru1—C4—C10−143.0 (5)
C4—Ru1—C1—C665.9 (2)C2—Ru1—C4—C10142.5 (5)
Cl1—Ru1—C1—C6−60.4 (2)C5—Ru1—C4—C10−113.6 (5)
Cl2—Ru1—C1—C6−147.07 (19)C1—Ru1—C4—C10180.0 (5)
Cl3—Ru1—C1—C6119.6 (4)C3—Ru1—C4—C10113.8 (5)
C6—Ru1—C1—C2−130.7 (3)Cl1—Ru1—C4—C10−74.4 (5)
C5—Ru1—C1—C2−101.8 (2)Cl2—Ru1—C4—C1096.4 (4)
C3—Ru1—C1—C2−28.1 (2)Cl3—Ru1—C4—C1012.3 (4)
C4—Ru1—C1—C2−64.8 (2)C3—C4—C5—C60.2 (5)
Cl1—Ru1—C1—C2168.98 (18)C10—C4—C5—C6177.4 (3)
Cl2—Ru1—C1—C282.3 (2)Ru1—C4—C5—C652.7 (3)
Cl3—Ru1—C1—C2−11.0 (5)C3—C4—C5—Ru1−52.5 (3)
C6—Ru1—C1—C7118.5 (4)C10—C4—C5—Ru1124.7 (3)
C2—Ru1—C1—C7−110.9 (4)C2—Ru1—C5—C6−66.8 (2)
C5—Ru1—C1—C7147.4 (4)C1—Ru1—C5—C6−28.6 (2)
C3—Ru1—C1—C7−138.9 (4)C3—Ru1—C5—C6−103.6 (2)
C4—Ru1—C1—C7−175.6 (4)C4—Ru1—C5—C6−132.6 (3)
Cl1—Ru1—C1—C758.1 (4)Cl1—Ru1—C5—C677.9 (2)
Cl2—Ru1—C1—C7−28.6 (4)Cl2—Ru1—C5—C6−15.4 (5)
Cl3—Ru1—C1—C7−121.9 (4)Cl3—Ru1—C5—C6167.78 (19)
C6—C1—C2—C31.9 (5)C6—Ru1—C5—C4132.6 (3)
C7—C1—C2—C3178.4 (3)C2—Ru1—C5—C465.7 (2)
Ru1—C1—C2—C354.6 (3)C1—Ru1—C5—C4104.0 (2)
C6—C1—C2—Ru1−52.7 (3)C3—Ru1—C5—C429.0 (2)
C7—C1—C2—Ru1123.8 (3)Cl1—Ru1—C5—C4−149.5 (2)
C6—Ru1—C2—C3−103.7 (2)Cl2—Ru1—C5—C4117.2 (3)
C5—Ru1—C2—C3−65.8 (2)Cl3—Ru1—C5—C4−59.6 (2)
C1—Ru1—C2—C3−133.8 (3)C2—C1—C6—C5−1.9 (5)
C4—Ru1—C2—C3−28.7 (2)C7—C1—C6—C5−178.1 (3)
Cl1—Ru1—C2—C3−152.29 (18)Ru1—C1—C6—C5−54.7 (3)
Cl2—Ru1—C2—C3128.1 (2)C2—C1—C6—Ru152.8 (3)
Cl3—Ru1—C2—C342.6 (3)C7—C1—C6—Ru1−123.4 (3)
C6—Ru1—C2—C130.1 (2)C4—C5—C6—C10.9 (5)
C5—Ru1—C2—C168.0 (2)Ru1—C5—C6—C154.9 (3)
C3—Ru1—C2—C1133.8 (3)C4—C5—C6—Ru1−54.0 (3)
C4—Ru1—C2—C1105.1 (2)C2—Ru1—C6—C1−30.6 (2)
Cl1—Ru1—C2—C1−18.5 (3)C5—Ru1—C6—C1−133.4 (3)
Cl2—Ru1—C2—C1−98.1 (2)C3—Ru1—C6—C1−67.4 (2)
Cl3—Ru1—C2—C1176.40 (17)C4—Ru1—C6—C1−104.4 (2)
C1—C2—C3—C4−0.9 (5)Cl1—Ru1—C6—C1123.77 (19)
Ru1—C2—C3—C453.2 (3)Cl2—Ru1—C6—C141.0 (2)
C1—C2—C3—Ru1−54.1 (3)Cl3—Ru1—C6—C1−154.91 (17)
C6—Ru1—C3—C266.3 (2)C2—Ru1—C6—C5102.8 (2)
C5—Ru1—C3—C2104.0 (2)C1—Ru1—C6—C5133.4 (3)
C1—Ru1—C3—C228.8 (2)C3—Ru1—C6—C566.0 (2)
C4—Ru1—C3—C2133.2 (3)C4—Ru1—C6—C529.0 (2)
Cl1—Ru1—C3—C2109.2 (4)Cl1—Ru1—C6—C5−102.8 (2)
Cl2—Ru1—C3—C2−56.9 (2)Cl2—Ru1—C6—C5174.34 (18)
Cl3—Ru1—C3—C2−146.7 (2)Cl3—Ru1—C6—C5−21.5 (3)
C6—Ru1—C3—C4−66.9 (2)C6—C1—C7—C915.6 (6)
C2—Ru1—C3—C4−133.2 (3)C2—C1—C7—C9−160.6 (4)
C5—Ru1—C3—C4−29.1 (2)Ru1—C1—C7—C9−74.7 (5)
C1—Ru1—C3—C4−104.3 (2)C6—C1—C7—C8−112.5 (6)
Cl1—Ru1—C3—C4−23.9 (5)C2—C1—C7—C871.4 (6)
Cl2—Ru1—C3—C4169.95 (18)Ru1—C1—C7—C8157.2 (5)
Cl3—Ru1—C3—C480.1 (2)C19—N2—C11—N1178.8 (3)
C2—C3—C4—C5−0.2 (5)C12—N2—C11—N10.4 (4)
Ru1—C3—C4—C552.1 (3)C13—N1—C11—N20.0 (4)
C2—C3—C4—C10−177.4 (3)C14—N1—C11—N2−168.6 (3)
Ru1—C3—C4—C10−125.1 (3)C11—N2—C12—C13−0.6 (4)
C2—C3—C4—Ru1−52.3 (3)C19—N2—C12—C13−179.1 (3)
C6—Ru1—C4—C3103.2 (2)C11—N1—C13—C12−0.4 (4)
C2—Ru1—C4—C328.6 (2)C14—N1—C13—C12168.4 (3)
C5—Ru1—C4—C3132.6 (3)N2—C12—C13—N10.6 (4)
C1—Ru1—C4—C366.1 (2)C11—N1—C14—C1593.3 (4)
Cl1—Ru1—C4—C3171.72 (16)C13—N1—C14—C15−73.9 (4)
Cl2—Ru1—C4—C3−17.4 (3)N1—C14—C15—S1'143.0 (3)
Cl3—Ru1—C4—C3−101.6 (2)N1—C14—C15—S1−40.9 (4)
C6—Ru1—C4—C5−29.4 (2)C11—N2—C19—C20109.6 (4)
C2—Ru1—C4—C5−103.9 (2)C12—N2—C19—C20−72.2 (4)
C1—Ru1—C4—C5−66.4 (2)N2—C19—C20—S2'−84.8 (4)
C3—Ru1—C4—C5−132.6 (3)N2—C19—C20—S298.6 (3)
Cl1—Ru1—C4—C539.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1i0.962.623.450 (4)144
C14—H14A···Cl1i0.962.823.553 (4)134
C19—H19A···Cl2i0.962.813.671 (4)150
C23—H23···Cl1ii0.962.663.549 (4)154
C14—H14B···Cg2iii0.962.833.784 (5)171
C19—H19B···Cl10.962.863.759 (5)157

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x, −y+2, −z+2; (iii) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2465).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Arduengo, A. J. & Krafczyc, R. (1998). Chem. Ztg, 32, 6–14.
  • Arslan, H., VanDerveer, D., Özdemir, İ., Çetinkaya, B. & Demir, S. (2005a). J. Chem. Crystallogr.35, 491–495.
  • Arslan, H., VanDerveer, D., Özdemir, I., Yaşar, S. & Çetinkaya, B. (2005b). Acta Cryst. E61, m1873–m1875.
  • Arslan, H., VanDerveer, D., Yaşar, S., Özdemir, İ. & Çetinkaya, B. (2007). Acta Cryst. E63, m1001–m1003.
  • Crundwell, G., Meskill, T., Sayers, D. & Kantardjieff, K. (2002). Acta Cryst. E58, o668–o670.
  • Herrmann, W. A. (2002). Angew. Chem. Int. Ed.41, 1290–1309. [PubMed]
  • Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl.34, 2371–2374.
  • Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
  • Linehan, J., Crundwell, G., Herron, S. R. & Kantardjieff, K. A. (2003). Acta Cryst. E59, o466–o468.
  • Liu, L., Zhang, Q.-F. & Leung, W.-H. (2004). Acta Cryst. E60, m506–m508.
  • Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem.71, 685–692. [PubMed]
  • Özdemir, İ., Demir, S., Çetinkaya, B. & Çetinkaya, E. (2005). J. Organomet. Chem.690, 5849–5855.
  • Özdemir, İ., Demir, S., Çetinkaya, B., Toupet, L., Castarlanes, R., Fischmeister, C. & Dixneuf, P. H. (2007). Eur. J. Inorg. Chem.18, 2862–2869.
  • Özdemir, İ., Gürbüz, N., Gök, Y. & Çetinkaya, B. (2008). Heteroat. Chem.19, 82–86.
  • Rigaku/MSC (2006). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sonar, V. N., Parkin, S. & Crooks, P. A. (2004). Acta Cryst. C60, o217–o218. [PubMed]
  • Sonar, V. N., Parkin, S. & Crooks, P. A. (2005a). Acta Cryst. E61, o933–o935.
  • Sonar, V. N., Parkin, S. & Crooks, P. A. (2005b). Acta Cryst. C61, o78–o80. [PubMed]
  • Therrien, B., Frein, S. & Süss-Fink, G. (2004). Acta Cryst. E60, m1666–m1668.
  • Wagner, P., Officer, D. L. & Kubicki, M. (2006a). Acta Cryst. E62, o5745–o5747.
  • Wagner, P., Officer, D. L. & Kubicki, M. (2006b). Acta Cryst. E62, o5931–o5932.
  • Yaşar, S., Özdemir, İ., Çetinkaya, B., Renaud, J. L. & Bruneau, C. (2008). Eur. J. Org. Chem.12, 2142–2149.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography