PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o273.
Published online 2009 January 10. doi:  10.1107/S1600536809000403
PMCID: PMC2968199

1-(4-Bromo­phen­yl)-2-{5-[(3,5-dimethyl-1H-pyrazol-1-yl)meth­yl]-4-phenyl-4H-1,2,4-triazol-3-ylsulfan­yl}ethanone

Abstract

The title compound, C22H20BrN5OS, is a potent new fungicide. The planes of the phenyl and pyrozole rings are almost perpendicular, making a dihedral angle of 86.5 (4)°. There are two non-classical inter­molecular C—H(...)O and C—H(...)N hydrogen bonds in the crystal structure.

Related literature

For background to heterocyclic compounds, see: Gong et al. (2008 [triangle]); Liu et al. (2007 [triangle]). For the synthesis, see: He et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o273-scheme1.jpg

Experimental

Crystal data

  • C22H20BrN5OS
  • M r = 482.40
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o273-efi1.jpg
  • a = 8.705 (2) Å
  • b = 9.173 (2) Å
  • c = 14.564 (4) Å
  • α = 94.561 (4)°
  • β = 97.659 (4)°
  • γ = 103.086 (4)°
  • V = 1115.3 (5) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.96 mm−1
  • T = 294 (2) K
  • 0.28 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.592, T max = 0.674
  • 5704 measured reflections
  • 3914 independent reflections
  • 2419 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.101
  • S = 1.02
  • 3914 reflections
  • 273 parameters
  • H-atom parameters constrained
  • Δρmax = 0.39 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000403/bq2115sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000403/bq2115Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

A variety of pyrazole and triazole heterocyclics could exhibit many activities. Meanwhile, heterocyclic compounds is an important developmental direction in medical (Gong et al., 2008) and pesticidal (Liu et al., 2007) chemistry.

In view of these facts and in continuation of our interest in the agriculture, we attempted to synthesize a series of amide derivatives, some of which have comparatively high fungicidal activity.

The molecular structure of title compound is showing in Fig.1. The x-ray analysis reveals that acetyl group is a planar with thio-ether group. The pyrozole ring is vertical with the benzene ring [dihedral angle 93.5 (4)°]. The packing of the structure is due to the weak intermolecular C-H..O and C-H..N H-bonds (Table 1. and Fig 2.).

Experimental

The compound 5-((3,5-Dimethyl-1H-pyrazol-1-yl)methyl)-4-phenyl-4H-1,2,4 -triazole-3-thiol was synthesized according to the reference (He et al., 2008). Then added p-bromo-phenacyl bromide, potassium carbonate anhydrous and N,N-Dimethyl formamide was stirred at room temperature for 5 h, giving the title compound. Colorless single crystals suitable for x-ray diffraction were obtained by recrystallization from a mixture of ethyl acetate and petroleum ether.

Refinement

The H atoms bonded to C and N atoms were positioned geometrically and refined using a riding model [aromatic C—H=0.93 Å, aliphatic C—H = 0.97 (2) Å, N—H=0.86 Å, Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
The structure of (I) with displacement ellipsoids drawn at the 30% probability level.
Fig. 2.
Partial packing diagram for (I). The dotted lines show the C—H–O bond.
Fig. 3.
The formation of the title compound.

Crystal data

C22H20BrN5OSZ = 2
Mr = 482.40F(000) = 492
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.705 (2) ÅCell parameters from 1669 reflections
b = 9.173 (2) Åθ = 2.6–23.0°
c = 14.564 (4) ŵ = 1.96 mm1
α = 94.561 (4)°T = 294 K
β = 97.659 (4)°Rhombic, colorless
γ = 103.086 (4)°0.28 × 0.24 × 0.20 mm
V = 1115.3 (5) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3914 independent reflections
Radiation source: fine-focus sealed tube2419 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→10
Tmin = 0.592, Tmax = 0.674k = −10→10
5704 measured reflectionsl = −17→6

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0351P)2 + 0.4689P] where P = (Fo2 + 2Fc2)/3
3914 reflections(Δ/σ)max = 0.001
273 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.29289 (6)0.67651 (6)−0.50744 (3)0.0905 (2)
S10.55698 (11)0.71293 (10)0.09603 (6)0.0490 (3)
O10.6651 (3)0.6235 (2)−0.07550 (16)0.0513 (6)
N11.0999 (3)1.1534 (3)0.3101 (2)0.0510 (7)
N21.1688 (3)1.0707 (3)0.25343 (19)0.0454 (7)
N30.8643 (4)1.0825 (3)0.07347 (19)0.0501 (7)
N40.7096 (3)0.9911 (3)0.05655 (19)0.0499 (7)
N50.8674 (3)0.8715 (3)0.13335 (16)0.0364 (6)
C11.1192 (6)1.2185 (5)0.4789 (3)0.0941 (15)
H1A1.07031.29730.45970.141*
H1B1.21341.26110.52360.141*
H1C1.04551.14740.50660.141*
C21.1639 (5)1.1397 (4)0.3953 (3)0.0590 (10)
C31.2727 (5)1.0505 (4)0.3942 (3)0.0640 (11)
H31.33271.02540.44560.077*
C41.2744 (4)1.0070 (4)0.3029 (3)0.0548 (10)
C51.3679 (5)0.9113 (5)0.2587 (3)0.0835 (14)
H5A1.29770.81720.23090.125*
H5B1.44810.89260.30520.125*
H5C1.41820.96230.21150.125*
C61.1288 (4)1.0667 (4)0.1533 (2)0.0507 (9)
H6A1.18631.00300.12280.061*
H6B1.16321.16760.13600.061*
C70.9553 (4)1.0093 (3)0.1199 (2)0.0405 (8)
C80.7156 (4)0.8664 (3)0.0931 (2)0.0398 (8)
C90.9262 (4)0.7495 (3)0.1701 (2)0.0363 (7)
C100.9932 (4)0.6635 (4)0.1140 (3)0.0571 (10)
H101.00270.68450.05330.069*
C111.0469 (5)0.5443 (4)0.1486 (3)0.0730 (12)
H111.09280.48460.11120.088*
C121.0322 (5)0.5149 (4)0.2383 (3)0.0658 (11)
H121.06650.43400.26130.079*
C130.9675 (5)0.6034 (4)0.2940 (3)0.0635 (11)
H130.96030.58400.35520.076*
C140.9126 (4)0.7216 (4)0.2602 (2)0.0514 (9)
H140.86710.78130.29780.062*
C150.4513 (4)0.7061 (4)−0.0201 (2)0.0461 (9)
H15A0.34810.6353−0.02620.055*
H15B0.43260.8047−0.02910.055*
C160.5408 (4)0.6597 (3)−0.0953 (2)0.0395 (8)
C170.4720 (4)0.6607 (3)−0.1940 (2)0.0420 (8)
C180.3491 (4)0.7294 (4)−0.2204 (2)0.0509 (9)
H180.30230.7726−0.17490.061*
C190.2954 (4)0.7345 (4)−0.3134 (3)0.0587 (10)
H190.21400.7820−0.33080.070*
C200.3635 (5)0.6689 (4)−0.3794 (2)0.0557 (10)
C210.4837 (5)0.5963 (4)−0.3557 (3)0.0638 (11)
H210.52760.5505−0.40150.077*
C220.5363 (4)0.5937 (4)−0.2631 (3)0.0547 (10)
H220.61730.5457−0.24630.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.1110 (4)0.1126 (4)0.0534 (3)0.0427 (3)0.0014 (3)0.0149 (3)
S10.0501 (6)0.0487 (5)0.0493 (5)0.0125 (4)0.0070 (4)0.0112 (4)
O10.0395 (14)0.0570 (15)0.0614 (15)0.0204 (12)0.0066 (12)0.0070 (12)
N10.0537 (19)0.0510 (18)0.0496 (19)0.0163 (15)0.0084 (15)0.0027 (15)
N20.0429 (17)0.0426 (16)0.0494 (18)0.0079 (14)0.0068 (14)0.0046 (14)
N30.067 (2)0.0359 (16)0.0486 (17)0.0156 (16)0.0042 (16)0.0102 (14)
N40.058 (2)0.0389 (17)0.0548 (18)0.0192 (16)0.0013 (15)0.0076 (14)
N50.0454 (17)0.0327 (15)0.0344 (15)0.0150 (13)0.0064 (13)0.0061 (12)
C10.111 (4)0.114 (4)0.057 (3)0.031 (3)0.015 (3)−0.008 (3)
C20.063 (3)0.059 (2)0.052 (2)0.011 (2)0.007 (2)0.005 (2)
C30.068 (3)0.059 (3)0.058 (3)0.013 (2)−0.010 (2)0.011 (2)
C40.045 (2)0.043 (2)0.074 (3)0.0081 (18)0.004 (2)0.005 (2)
C50.067 (3)0.070 (3)0.117 (4)0.033 (2)0.003 (3)−0.001 (3)
C60.057 (2)0.048 (2)0.047 (2)0.0074 (18)0.0164 (18)0.0065 (17)
C70.050 (2)0.0356 (19)0.0362 (18)0.0082 (17)0.0104 (16)0.0041 (15)
C80.051 (2)0.0351 (19)0.0361 (18)0.0185 (17)0.0032 (16)0.0019 (15)
C90.0392 (19)0.0319 (17)0.0402 (19)0.0122 (15)0.0063 (15)0.0078 (15)
C100.072 (3)0.056 (2)0.052 (2)0.033 (2)0.012 (2)0.0057 (19)
C110.085 (3)0.059 (3)0.085 (3)0.043 (2)0.010 (3)0.000 (2)
C120.064 (3)0.048 (2)0.087 (3)0.023 (2)−0.005 (2)0.024 (2)
C130.076 (3)0.063 (3)0.055 (2)0.020 (2)0.006 (2)0.027 (2)
C140.062 (2)0.054 (2)0.044 (2)0.0220 (19)0.0124 (18)0.0119 (17)
C150.044 (2)0.043 (2)0.053 (2)0.0147 (17)0.0041 (17)0.0054 (16)
C160.036 (2)0.0261 (17)0.055 (2)0.0050 (15)0.0059 (17)0.0036 (15)
C170.040 (2)0.0376 (19)0.048 (2)0.0095 (16)0.0066 (17)0.0050 (16)
C180.050 (2)0.054 (2)0.051 (2)0.0198 (19)0.0067 (18)−0.0005 (18)
C190.058 (2)0.059 (2)0.063 (3)0.027 (2)−0.002 (2)0.007 (2)
C200.061 (2)0.058 (2)0.048 (2)0.013 (2)0.006 (2)0.0078 (19)
C210.069 (3)0.077 (3)0.052 (2)0.029 (2)0.014 (2)0.002 (2)
C220.054 (2)0.060 (2)0.057 (2)0.027 (2)0.0087 (19)0.0051 (19)

Geometric parameters (Å, °)

Br1—C201.896 (3)C6—H6B0.9700
S1—C81.742 (3)C9—C101.365 (4)
S1—C151.803 (3)C9—C141.372 (4)
O1—C161.208 (3)C10—C111.387 (5)
N1—C21.319 (4)C10—H100.9300
N1—N21.362 (4)C11—C121.371 (5)
N2—C41.356 (4)C11—H110.9300
N2—C61.449 (4)C12—C131.363 (5)
N3—C71.306 (4)C12—H120.9300
N3—N41.395 (4)C13—C141.380 (5)
N4—C81.308 (4)C13—H130.9300
N5—C81.361 (4)C14—H140.9300
N5—C71.365 (4)C15—C161.514 (4)
N5—C91.443 (4)C15—H15A0.9700
C1—C21.506 (5)C15—H15B0.9700
C1—H1A0.9600C16—C171.484 (4)
C1—H1B0.9600C17—C221.382 (4)
C1—H1C0.9600C17—C181.387 (4)
C2—C31.385 (5)C18—C191.381 (5)
C3—C41.360 (5)C18—H180.9300
C3—H30.9300C19—C201.363 (5)
C4—C51.491 (5)C19—H190.9300
C5—H5A0.9600C20—C211.382 (5)
C5—H5B0.9600C21—C221.369 (5)
C5—H5C0.9600C21—H210.9300
C6—C71.483 (5)C22—H220.9300
C6—H6A0.9700
C8—S1—C1598.77 (15)C10—C9—N5119.1 (3)
C2—N1—N2104.6 (3)C14—C9—N5119.5 (3)
C4—N2—N1111.8 (3)C9—C10—C11119.2 (3)
C4—N2—C6129.2 (3)C9—C10—H10120.4
N1—N2—C6118.9 (3)C11—C10—H10120.4
C7—N3—N4107.4 (3)C12—C11—C10119.7 (4)
C8—N4—N3106.9 (3)C12—C11—H11120.1
C8—N5—C7105.1 (2)C10—C11—H11120.1
C8—N5—C9127.1 (3)C13—C12—C11120.4 (3)
C7—N5—C9127.3 (3)C13—C12—H12119.8
C2—C1—H1A109.5C11—C12—H12119.8
C2—C1—H1B109.5C12—C13—C14120.4 (4)
H1A—C1—H1B109.5C12—C13—H13119.8
C2—C1—H1C109.5C14—C13—H13119.8
H1A—C1—H1C109.5C9—C14—C13118.9 (3)
H1B—C1—H1C109.5C9—C14—H14120.6
N1—C2—C3111.3 (3)C13—C14—H14120.6
N1—C2—C1120.7 (4)C16—C15—S1112.9 (2)
C3—C2—C1127.9 (4)C16—C15—H15A109.0
C4—C3—C2106.4 (3)S1—C15—H15A109.0
C4—C3—H3126.8C16—C15—H15B109.0
C2—C3—H3126.8S1—C15—H15B109.0
N2—C4—C3105.9 (3)H15A—C15—H15B107.8
N2—C4—C5123.3 (4)O1—C16—C17120.9 (3)
C3—C4—C5130.9 (4)O1—C16—C15121.0 (3)
C4—C5—H5A109.5C17—C16—C15118.1 (3)
C4—C5—H5B109.5C22—C17—C18118.4 (3)
H5A—C5—H5B109.5C22—C17—C16118.5 (3)
C4—C5—H5C109.5C18—C17—C16123.1 (3)
H5A—C5—H5C109.5C19—C18—C17120.7 (3)
H5B—C5—H5C109.5C19—C18—H18119.6
N2—C6—C7112.5 (3)C17—C18—H18119.6
N2—C6—H6A109.1C20—C19—C18119.0 (3)
C7—C6—H6A109.1C20—C19—H19120.5
N2—C6—H6B109.1C18—C19—H19120.5
C7—C6—H6B109.1C19—C20—C21121.8 (3)
H6A—C6—H6B107.8C19—C20—Br1119.6 (3)
N3—C7—N5110.1 (3)C21—C20—Br1118.6 (3)
N3—C7—C6125.2 (3)C22—C21—C20118.3 (3)
N5—C7—C6124.7 (3)C22—C21—H21120.9
N4—C8—N5110.5 (3)C20—C21—H21120.9
N4—C8—S1127.3 (3)C21—C22—C17121.7 (3)
N5—C8—S1122.2 (2)C21—C22—H22119.1
C10—C9—C14121.4 (3)C17—C22—H22119.1
C2—N1—N2—C4−0.2 (4)C15—S1—C8—N5−141.3 (3)
C2—N1—N2—C6−177.5 (3)C8—N5—C9—C1093.5 (4)
C7—N3—N4—C8−0.5 (3)C7—N5—C9—C10−76.7 (4)
N2—N1—C2—C30.3 (4)C8—N5—C9—C14−86.0 (4)
N2—N1—C2—C1179.0 (3)C7—N5—C9—C14103.8 (4)
N1—C2—C3—C4−0.2 (5)C14—C9—C10—C110.7 (5)
C1—C2—C3—C4−178.9 (4)N5—C9—C10—C11−178.7 (3)
N1—N2—C4—C30.0 (4)C9—C10—C11—C12−0.1 (6)
C6—N2—C4—C3177.0 (3)C10—C11—C12—C13−1.1 (6)
N1—N2—C4—C5−179.6 (3)C11—C12—C13—C141.5 (6)
C6—N2—C4—C5−2.6 (5)C10—C9—C14—C13−0.3 (5)
C2—C3—C4—N20.1 (4)N5—C9—C14—C13179.2 (3)
C2—C3—C4—C5179.7 (4)C12—C13—C14—C9−0.9 (6)
C4—N2—C6—C7124.9 (4)C8—S1—C15—C1668.2 (2)
N1—N2—C6—C7−58.3 (4)S1—C15—C16—O14.1 (4)
N4—N3—C7—N50.9 (3)S1—C15—C16—C17−175.6 (2)
N4—N3—C7—C6−179.1 (3)O1—C16—C17—C2211.7 (5)
C8—N5—C7—N3−0.9 (3)C15—C16—C17—C22−168.6 (3)
C9—N5—C7—N3171.0 (3)O1—C16—C17—C18−166.4 (3)
C8—N5—C7—C6179.0 (3)C15—C16—C17—C1813.2 (4)
C9—N5—C7—C6−9.0 (5)C22—C17—C18—C19−1.8 (5)
N2—C6—C7—N3122.0 (3)C16—C17—C18—C19176.3 (3)
N2—C6—C7—N5−58.0 (4)C17—C18—C19—C200.9 (5)
N3—N4—C8—N5−0.1 (3)C18—C19—C20—C210.6 (6)
N3—N4—C8—S1178.2 (2)C18—C19—C20—Br1−179.3 (3)
C7—N5—C8—N40.6 (3)C19—C20—C21—C22−1.2 (6)
C9—N5—C8—N4−171.4 (3)Br1—C20—C21—C22178.8 (3)
C7—N5—C8—S1−177.8 (2)C20—C21—C22—C170.3 (6)
C9—N5—C8—S110.3 (4)C18—C17—C22—C211.2 (5)
C15—S1—C8—N440.6 (3)C16—C17—C22—C21−177.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C6—H6B···O1i0.972.453.365 (3)157
C15—H15B···N4ii0.972.503.429 (3)161

Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2115).

References

  • Bruker. (2004). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Gong, Y., Barbay, J. K., Buntinx, M., Li, J., Van Wauweb, J., Claes, C., Van Lommen, G., Hornby, P. J. & He, W. (2008). Bioorg. Med. Chem. Lett.18, 3852–3855. [PubMed]
  • He, F. Q., Liu, X. H., Wang, B. L. & Li, Z. M. (2008). Heteroat. Chem.19, 21–27.
  • Liu, X. H., Chen, P. Q., Wang, B. L., Li, Y. H., Wang, S. H. & Li, Z. M. (2007). Bioorg. Med. Chem. Lett.17, 3784–3788. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography