PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o355.
Published online 2009 January 23. doi:  10.1107/S1600536809001883
PMCID: PMC2968194

(E)-(2,4-Dichloro­phen­yl)[2-hydr­oxy-6-(methoxy­imino)cyclo­hex-1-en­yl]methanone

Abstract

The title compound, C14H13Cl2NO3, was obtained as the product of an attempted synthesis of herbicidally active compounds containing oxime ether and cyclo­hexenone groups. In the crystal structure, the mol­ecule adopts an endocyclic enol tautomeric form and the cyclo­hexene ring adopts a distorted envelope form. The oxime ether group has an E configuration, with the meth­oxy group anti to the ortho-chloro substitutent. Intra­molecular O—H(...)O and inter­molecular C—H(...)O hydrogen bonds are found in the crystal structure.

Related literature

For the structure of 5-chloro-2-methyl­thio-3H-indole-3-one 3-oxime O-methyl ether, see: Beddoes et al. (1992 [triangle]). For theoretical studies on the tautomerism of benzoyl­cyclo­hexane-1,3-dione and its derivatives, see: Huang et al. (2002 [triangle]). For the potential herbicidal property of the title compound and related compounds, see: Knudsen (1988 [triangle]). For the chemistry of 2-acyl­cyclo­alkane-1,3-diones, see: Rubinov et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o355-scheme1.jpg

Experimental

Crystal data

  • C14H13Cl2NO3
  • M r = 314.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o355-efi1.jpg
  • a = 8.4096 (17) Å
  • b = 8.9944 (18) Å
  • c = 11.740 (2) Å
  • α = 68.38 (3)°
  • β = 74.50 (3)°
  • γ = 62.32 (3)°
  • V = 726.0 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 298 (2) K
  • 0.68 × 0.34 × 0.23 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001 [triangle]) T min = 0.748, T max = 0.903
  • 6630 measured reflections
  • 3247 independent reflections
  • 2162 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049
  • wR(F 2) = 0.144
  • S = 1.08
  • 3247 reflections
  • 233 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.35 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809001883/si2144sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001883/si2144Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Natural Science Foundation of Zhejiang Province (No. Y406042) and the Natural Science Foundation of Ningbo City (No. 2008A610068) for financial support.

supplementary crystallographic information

Comment

2-Acylcycloalkanone derivatives, either natural or synthetic products, have been widely studied because of their versatile biological activity (Rubinov et al. 1999). The title compound, which was reported previously as a potential herbicide (Knudsen, 1988), was synthesized using 3-chloro-2-(2,4-dichlorobenzoyl)cyclohex-2-enone and methoxyamine hydrochloride as reactants and triethylamine as a catalyst. Herin we report its crystal structure with an attempt to understand better the structure-activity relationship of this class of compounds.

The title compound consists of 2,4-dichlorobenzoyl and cyclohexenone oxime O-methyl ether moieties. It has several possible tautomers in solution due to the existence of a 1,3-dione structure (Huang et al. 2002). The title molecule adopts an endocyclic enol tautomeric form in the crystal structure, i.e. the carbonyl group of the cyclohexenone unit is enolized. The cyclohexene ring adopts a distorted envelope form. The oxime ether is in an E configuration, with the methoxy group being anti to the substitutent group at the C-11 position (Fig. 1). The bond length of C6=N1 is 1.284 (3) Å and the C=N—O angle is 110.89 (17)°, which is close to the value in 5-chloro-2-methylthio-3H-indole-3-one 3-oxime O-methyl ether, (111.3 (5)°) (Beddoes et al., 1992), showing that the C6=N1 bond is conjugated with the C8=C11 and C9=O1 bonds.

There is a strong intramolecular hydrogen bond, O2—H10···O1 (Table 1) and, as a result, a pseudo-six-membered ring (C8—O2—H10···O1—C9—C11) is formed in the structure (Fig. 1). The torsional angle of O1—C9—C8—C11 is 11.9 (3)°. In addition, two weak intermolecular C—H···O hydrogen bonding contacts, which form columns along the b axis, are found in the packing structure (Table 1 and Fig. 2).

Experimental

A mixture of 2-(2,4-dichlorobenzoyl)cyclohexen-1,3-dione (0.57 g, 2 mmol), methoxyamine hydrochloride (0.18 g, 2.2 mmol) and anhydrous sodium acetate (0.2 g, 2.4 mmol) was stirred in methanol (30 ml) at room temperature for 16 h. The mixture was diluted with 100 ml of water and extracted with 30 ml e thyl acetate three times. The combined organic layer was dried with anhydrous magnesium sulfate and purified by column chromatography (ethyl acetate:petroleum ether = 1:12) to afford the title compound (70% yield). A crystal suitable for X-ray analysis was obtained by recrystallization of the product with acetone/pentane (1:10) at room temperature over a period of 3 d.

Refinement

All H atoms were located in difference Fourier maps and refined independently with isotropic displacement parameters.

Figures

Fig. 1.
Perspective view of the title complex with atom numbering scheme. Thermal ellipsoids are shown at 30% probability level.
Fig. 2.
One-dimensional supramolecular structure showing intermolecular C—H···O hydrogen bonding contacts.

Crystal data

C14H13Cl2NO3Z = 2
Mr = 314.15F(000) = 324
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4096 (17) ÅCell parameters from 3247 reflections
b = 8.9944 (18) Åθ = 3.2–27.5°
c = 11.740 (2) ŵ = 0.45 mm1
α = 68.38 (3)°T = 298 K
β = 74.50 (3)°Block, green
γ = 62.32 (3)°0.68 × 0.34 × 0.23 mm
V = 726.0 (3) Å3

Data collection

Bruker APEXII CCD diffractometer3247 independent reflections
Radiation source: fine-focus sealed tube2162 reflections with I > 2σ(I)
graphiteRint = 0.021
Detector resolution: 8.40 pixels mm-1θmax = 27.5°, θmin = 3.2°
ω scansh = −10→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2001)k = −11→10
Tmin = 0.748, Tmax = 0.903l = −15→15
6630 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.08w = 1/[σ2(Fo2) + (0.0701P)2 + 0.0941P] where P = (Fo2 + 2Fc2)/3
3247 reflections(Δ/σ)max < 0.001
233 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.20742 (14)0.71882 (10)0.43507 (6)0.0984 (3)
Cl20.28869 (13)1.27753 (12)0.43224 (9)0.1098 (3)
O10.4465 (2)0.7560 (2)0.09971 (15)0.0676 (4)
O20.3124 (2)0.5952 (2)0.05046 (15)0.0658 (4)
H100.389 (4)0.641 (4)0.050 (3)0.099 (10)*
O3−0.25125 (19)1.1694 (2)0.24393 (17)0.0686 (5)
N1−0.0704 (2)1.0779 (2)0.19908 (16)0.0551 (4)
C10.2934 (3)1.1452 (3)0.3538 (3)0.0689 (6)
C20.3365 (3)1.1861 (3)0.2287 (3)0.0677 (7)
H30.361 (4)1.281 (4)0.184 (3)0.087 (9)*
C30.2551 (4)1.0015 (3)0.4191 (3)0.0702 (7)
H60.231 (4)0.968 (4)0.507 (3)0.089 (9)*
C40.3381 (3)1.0831 (3)0.1661 (2)0.0583 (5)
H10.370 (3)1.110 (3)0.076 (2)0.064 (7)*
C50.2563 (3)0.9004 (3)0.3541 (2)0.0604 (5)
C6−0.0470 (3)0.9302 (3)0.19137 (19)0.0511 (5)
C70.2943 (2)0.9405 (3)0.22713 (19)0.0510 (5)
C80.1559 (3)0.6921 (3)0.09904 (19)0.0539 (5)
C90.2954 (3)0.8347 (3)0.15450 (19)0.0518 (5)
C100.0020 (3)0.6524 (4)0.1021 (3)0.0688 (7)
H8−0.056 (4)0.718 (4)0.021 (3)0.113 (11)*
H110.041 (4)0.528 (4)0.105 (3)0.108 (10)*
C110.1366 (3)0.8193 (3)0.14735 (18)0.0485 (5)
C12−0.1359 (4)0.6906 (4)0.2117 (3)0.0826 (8)
H7−0.244 (4)0.675 (4)0.210 (3)0.100 (9)*
H14−0.080 (5)0.606 (5)0.301 (4)0.139 (13)*
C13−0.1984 (3)0.8748 (4)0.2142 (3)0.0746 (7)
H2−0.259 (4)0.888 (4)0.289 (3)0.086 (9)*
H15−0.275 (5)0.953 (5)0.131 (4)0.143 (14)*
C14−0.2681 (4)1.3347 (3)0.2447 (3)0.0700 (7)
H4−0.178 (4)1.311 (4)0.295 (3)0.101 (10)*
H5−0.386 (4)1.389 (4)0.281 (3)0.085 (8)*
H9−0.252 (4)1.405 (4)0.157 (3)0.096 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.1770 (9)0.0882 (5)0.0587 (4)−0.0887 (6)−0.0179 (4)−0.0028 (3)
Cl20.1302 (7)0.1061 (6)0.1376 (8)−0.0655 (6)−0.0103 (6)−0.0629 (6)
O10.0478 (9)0.0763 (11)0.0799 (11)−0.0253 (8)0.0041 (8)−0.0315 (9)
O20.0621 (10)0.0652 (10)0.0717 (10)−0.0211 (9)−0.0022 (8)−0.0318 (9)
O30.0475 (8)0.0587 (9)0.1003 (12)−0.0155 (7)−0.0036 (8)−0.0352 (9)
N10.0437 (9)0.0536 (10)0.0654 (11)−0.0154 (8)−0.0069 (8)−0.0198 (9)
C10.0621 (14)0.0655 (14)0.0918 (19)−0.0265 (12)−0.0169 (13)−0.0299 (14)
C20.0538 (13)0.0547 (13)0.098 (2)−0.0278 (11)−0.0148 (12)−0.0138 (13)
C30.0854 (18)0.0705 (16)0.0681 (16)−0.0395 (14)−0.0169 (13)−0.0183 (13)
C40.0441 (11)0.0593 (13)0.0698 (14)−0.0252 (10)−0.0098 (10)−0.0090 (11)
C50.0694 (14)0.0562 (12)0.0603 (13)−0.0317 (11)−0.0142 (10)−0.0090 (10)
C60.0455 (11)0.0521 (11)0.0573 (11)−0.0198 (9)−0.0103 (9)−0.0146 (9)
C70.0388 (10)0.0511 (11)0.0605 (12)−0.0163 (9)−0.0125 (9)−0.0113 (10)
C80.0528 (12)0.0514 (12)0.0548 (11)−0.0165 (10)−0.0091 (9)−0.0167 (10)
C90.0475 (11)0.0495 (11)0.0516 (11)−0.0183 (9)−0.0069 (9)−0.0085 (9)
C100.0619 (14)0.0684 (15)0.0903 (18)−0.0237 (12)−0.0170 (13)−0.0361 (15)
C110.0457 (11)0.0484 (11)0.0490 (10)−0.0169 (9)−0.0096 (8)−0.0117 (9)
C120.0660 (16)0.0835 (19)0.121 (3)−0.0422 (15)0.0002 (16)−0.0455 (19)
C130.0544 (14)0.0774 (17)0.108 (2)−0.0333 (13)0.0044 (15)−0.0450 (17)
C140.0738 (17)0.0558 (14)0.0770 (17)−0.0174 (13)−0.0090 (15)−0.0272 (14)

Geometric parameters (Å, °)

Cl1—C51.735 (2)C6—C111.473 (3)
Cl2—C11.735 (3)C6—C131.500 (3)
O1—C91.262 (2)C7—C91.490 (3)
O2—C81.310 (3)C8—C111.383 (3)
O2—H100.91 (3)C8—C101.483 (3)
O3—N11.413 (2)C9—C111.432 (3)
O3—C141.429 (3)C10—C121.509 (4)
N1—C61.284 (3)C10—H81.03 (3)
C1—C21.366 (4)C10—H111.00 (3)
C1—C31.373 (4)C12—C131.497 (4)
C2—C41.373 (3)C12—H70.99 (3)
C2—H30.90 (3)C12—H141.12 (4)
C3—C51.381 (3)C13—H20.91 (3)
C3—H60.96 (3)C13—H151.13 (4)
C4—C71.384 (3)C14—H40.99 (3)
C4—H10.99 (2)C14—H50.94 (3)
C5—C71.382 (3)C14—H91.00 (3)
C8—O2—H10104.4 (19)C11—C9—C7122.91 (18)
N1—O3—C14107.48 (18)C8—C10—C12110.6 (2)
C6—N1—O3110.89 (17)C8—C10—H8112.0 (19)
C2—C1—C3121.8 (2)C12—C10—H8111.5 (18)
C2—C1—Cl2119.0 (2)C8—C10—H11112.8 (19)
C3—C1—Cl2119.2 (2)C12—C10—H11108.9 (18)
C1—C2—C4119.2 (2)H8—C10—H11101 (2)
C1—C2—H3122.8 (18)C8—C11—C9118.71 (18)
C4—C2—H3118.0 (18)C8—C11—C6118.12 (18)
C1—C3—C5118.0 (2)C9—C11—C6123.15 (18)
C1—C3—H6122.7 (17)C13—C12—C10111.8 (3)
C5—C3—H6119.3 (17)C13—C12—H7107.1 (18)
C2—C4—C7121.2 (2)C10—C12—H7111.0 (17)
C2—C4—H1120.3 (14)C13—C12—H14105 (2)
C7—C4—H1118.5 (14)C10—C12—H14112 (2)
C3—C5—C7121.9 (2)H7—C12—H14109 (3)
C3—C5—Cl1118.64 (19)C12—C13—C6113.5 (2)
C7—C5—Cl1119.48 (17)C12—C13—H2110.8 (19)
N1—C6—C11116.84 (18)C6—C13—H2106.2 (18)
N1—C6—C13123.33 (19)C12—C13—H15102.1 (19)
C11—C6—C13119.61 (19)C6—C13—H15106 (2)
C5—C7—C4117.9 (2)H2—C13—H15118 (3)
C5—C7—C9123.08 (19)O3—C14—H4107.5 (19)
C4—C7—C9119.0 (2)O3—C14—H5105.9 (18)
O2—C8—C11122.27 (19)H4—C14—H5111 (2)
O2—C8—C10115.41 (19)O3—C14—H9108.2 (16)
C11—C8—C10122.29 (19)H4—C14—H9114 (3)
O1—C9—C11121.04 (19)H5—C14—H9110 (2)
O1—C9—C7116.05 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H10···O10.91 (3)1.64 (3)2.485 (2)152 (3)
C4—H1···O1i0.99 (2)2.51 (2)3.347 (3)143 (2)
C2—H3···O2ii0.91 (4)2.57 (3)3.438 (3)160 (3)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2144).

References

  • Beddoes, R. L., Kearney, T., Jackson, A. & Joule, J. A. (1992). Acta Cryst. C48, 1444–1446.
  • Bruker (2003). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  • Huang, M.-L., Zou, J.-W., Yang, D.-Y., Ning, B.-Z., Shang, Z.-C. & Yu, Q.-S. (2002). J. Mol. Struct. (THEOCHEM), 589–590, 321–328.
  • Knudsen, C. G. (1988). US Patent 4 775 411.
  • Rubinov, D. B., Rubinova, I. L. & Akhrem, A. A. (1999). Chem. Rev.99, 1047–1065. [PubMed]
  • Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography