PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m136.
Published online 2009 January 8. doi:  10.1107/S1600536808043468
PMCID: PMC2968193

Dichlorido(dipyrido[3,2-a:2′,3′-c]phenazine)manganese(II)

Abstract

The complete mol­ecule of the title compound, [MnCl2(C18H10N4)2], is generated by crystallographic twofold symmetry with the Mn atom lying on the rotation axis. The Mn coordination geometry is a distorted cis-MnCl2N4 octa­hedron, arising from two N,N′-bidentate dipyrido[3,2-a:2′,3′-c]phenazine (DPPZ) ligands and two chloride ions. In the crystal structure, neighbouring mononuclear units pack together through π–π contacts between the DPPZ rings [shortest centroid–centroid distance = 3.480 (2) Å], leading to a chain-like structure along [001]. C—H(...)Cl hydrogen bonds complete the structure.

Related literature

For background, see: Che et al. (2006 [triangle], 2008 [triangle]); Xu et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m136-scheme1.jpg

Experimental

Crystal data

  • [MnCl2(C18H10N4)2]
  • M r = 690.44
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m136-efi3.jpg
  • a = 8.4017 (17) Å
  • b = 12.256 (3) Å
  • c = 28.226 (6) Å
  • β = 95.09 (3)°
  • V = 2895.0 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.69 mm−1
  • T = 292 (2) K
  • 0.38 × 0.24 × 0.21 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.821, T max = 0.864
  • 11873 measured reflections
  • 2866 independent reflections
  • 1748 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.120
  • S = 1.00
  • 2866 reflections
  • 243 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.43 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043468/hb2884sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043468/hb2884Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Doctoral Foundation of Jilin Normal University (grant Nos. 2006006 and 2007009) and the Subject and Base Construction Foundation of Jilin Normal University (grant No. 2006041).

supplementary crystallographic information

Comment

1,10-Phenanthroline (phen) and its derivatives, as chelating N-containing aromatic ligands, has been extensively studied in the chemistry of coordination polymers (Che et al., 2008). Here, we report the crystal structure of the title compound, [Mn(DPPZ)2Cl2] or [Mn(C18H10N4)2Cl2] (I), based on the dipyrido[3,2 - a:2',3'-c]-phenazine (DPPZ) ligand (Xu et al., 2008).

In compound (I), the Mn atom (site symmetry 2) is coordinated in a distorted octahedral fashion (Fig. 1) by four N atoms from two DPPZ ligands and two Cl ions (Table 1). The DPPZ ring systems is almost planar and the dihedral angle between the two symmetry-related DPPZ planes is 70.66°.

π-π stacking interactions between the DPPZ ligands assemble mononuclear complex molecules into one-dimensional chains along (001) [centroid-centroid distances = 3.480 (2) Å] (Fig. 2). Finally, C—H···Cl hydrogen bonds involving the hydrogen of aromatic rings and the Cl ions further stabilize the crystal structure (Table 2).

Experimental

The DPPZ ligand was synthesized according to the literature method of Che et al. (2006). A mixture of DPPZ, MnCl2 and water in a molar ratio of 2:1:5000 was sealed in a Teflon-lined autoclave and heated to 423 K for 3 d. Upon cooling and opening the bomb, yellow blocks of (I) were obtained (81% yield based on Mn).

Refinement

The H atoms were located in a difference map and their positions were freely refined with a fixed Uiso value of 0.06Å2.

Figures

Fig. 1.
A view of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). [Symmetry code: (i) -x + 2, y, -z + 1/2.]
Fig. 2.
View of the supramolecular chain structure of (I) arising from π-π stacking. H atoms have been omitted. [Symmetry code: (A) -x + 2, y, -z + 1/2; (B) x, -y + 1, -z; (C) x, y, -z - 1; (BA) x, -y + 1, -z - 1.]

Crystal data

[MnCl2(C18H10N4)2]F(000) = 1404
Mr = 690.44Dx = 1.584 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2001 reflections
a = 8.4017 (17) Åθ = 2.9–26.1°
b = 12.256 (3) ŵ = 0.69 mm1
c = 28.226 (6) ÅT = 292 K
β = 95.09 (3)°Block, yellow
V = 2895.0 (10) Å30.38 × 0.24 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2866 independent reflections
Radiation source: fine-focus sealed tube1748 reflections with I > 2σ(I)
graphiteRint = 0.078
ω scansθmax = 26.1°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −10→10
Tmin = 0.821, Tmax = 0.864k = −15→15
11873 measured reflectionsl = −34→34

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
2866 reflections(Δ/σ)max = 0.001
243 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.6671 (4)0.3405 (3)0.29912 (12)0.0408 (9)
C20.5622 (4)0.3550 (3)0.33399 (12)0.0459 (10)
C30.6118 (4)0.4167 (3)0.37276 (13)0.0461 (10)
C40.7619 (4)0.4666 (3)0.37635 (11)0.0343 (8)
C50.8223 (4)0.5307 (3)0.41737 (11)0.0367 (9)
C70.7118 (5)0.6056 (3)0.53324 (14)0.0508 (11)
C80.7738 (5)0.6604 (3)0.57158 (13)0.0521 (11)
C90.9253 (5)0.7097 (3)0.57276 (13)0.0501 (11)
C101.0139 (5)0.7010 (3)0.53419 (13)0.0508 (11)
C110.9520 (4)0.6445 (3)0.49315 (12)0.0424 (9)
C120.9766 (4)0.5811 (3)0.41822 (12)0.0373 (9)
C131.0710 (4)0.5678 (3)0.37731 (11)0.0364 (9)
C141.2220 (4)0.6152 (3)0.37604 (13)0.0448 (10)
C151.3054 (4)0.5992 (3)0.33699 (13)0.0472 (10)
C161.2389 (4)0.5345 (3)0.30016 (13)0.0419 (9)
C171.0135 (4)0.5042 (3)0.33907 (11)0.0345 (8)
C180.8568 (4)0.4510 (3)0.33849 (11)0.0333 (8)
C60.7985 (4)0.5942 (3)0.49265 (12)0.0404 (9)
N10.8113 (3)0.3861 (2)0.30102 (9)0.0377 (7)
N21.0963 (3)0.4861 (2)0.30080 (9)0.0380 (7)
N30.7343 (3)0.5382 (2)0.45415 (9)0.0409 (8)
N41.0403 (3)0.6370 (2)0.45531 (10)0.0427 (8)
Mn1.00000.34811 (7)0.25000.0383 (3)
Cl0.82991 (11)0.22033 (8)0.20077 (3)0.0501 (3)
H10.634 (4)0.289 (3)0.2722 (13)0.060*
H20.448 (4)0.313 (3)0.3296 (12)0.060*
H30.550 (4)0.427 (3)0.3977 (13)0.060*
H70.613 (4)0.566 (3)0.5315 (12)0.060*
H80.720 (4)0.663 (3)0.5996 (13)0.060*
H90.973 (4)0.751 (3)0.6018 (14)0.060*
H101.116 (4)0.738 (3)0.5341 (13)0.060*
H141.264 (4)0.661 (3)0.3997 (13)0.060*
H151.417 (4)0.634 (3)0.3341 (12)0.060*
H161.299 (4)0.524 (3)0.2703 (12)0.060*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.036 (2)0.056 (3)0.031 (2)−0.0009 (19)0.0073 (16)−0.0062 (19)
C20.036 (2)0.068 (3)0.035 (2)−0.003 (2)0.0089 (17)−0.006 (2)
C30.037 (2)0.069 (3)0.035 (2)0.003 (2)0.0195 (18)0.000 (2)
C40.0330 (19)0.043 (2)0.0278 (19)0.0012 (17)0.0080 (15)0.0006 (16)
C50.037 (2)0.045 (2)0.0288 (19)0.0031 (18)0.0086 (16)0.0008 (17)
C70.058 (3)0.061 (3)0.036 (2)0.005 (2)0.019 (2)−0.003 (2)
C80.061 (3)0.069 (3)0.029 (2)0.004 (2)0.0175 (19)−0.008 (2)
C90.060 (3)0.058 (3)0.032 (2)0.012 (2)0.002 (2)−0.008 (2)
C100.054 (3)0.061 (3)0.037 (2)−0.002 (2)0.007 (2)−0.009 (2)
C110.049 (2)0.050 (2)0.029 (2)0.005 (2)0.0079 (17)−0.0027 (18)
C120.041 (2)0.042 (2)0.030 (2)0.0025 (18)0.0095 (16)−0.0019 (18)
C130.039 (2)0.042 (2)0.030 (2)0.0012 (17)0.0075 (16)−0.0004 (17)
C140.045 (2)0.051 (3)0.039 (2)−0.010 (2)0.0098 (18)−0.0088 (19)
C150.038 (2)0.056 (3)0.049 (2)−0.009 (2)0.0158 (19)−0.002 (2)
C160.044 (2)0.051 (2)0.032 (2)−0.0016 (19)0.0128 (17)0.0011 (19)
C170.0339 (19)0.044 (2)0.0269 (19)0.0051 (17)0.0078 (15)0.0047 (17)
C180.0342 (19)0.041 (2)0.0257 (19)0.0034 (17)0.0065 (15)0.0021 (17)
C60.047 (2)0.050 (2)0.025 (2)0.0076 (19)0.0090 (16)−0.0031 (18)
N10.0344 (16)0.049 (2)0.0300 (17)−0.0013 (15)0.0053 (13)−0.0018 (15)
N20.0379 (17)0.050 (2)0.0283 (16)0.0001 (15)0.0129 (13)0.0004 (14)
N30.0396 (17)0.054 (2)0.0307 (17)0.0027 (15)0.0128 (14)−0.0028 (15)
N40.0452 (18)0.052 (2)0.0317 (17)0.0017 (15)0.0091 (14)−0.0061 (15)
Mn0.0351 (4)0.0540 (6)0.0273 (4)0.0000.0113 (3)0.000
Cl0.0432 (6)0.0631 (7)0.0448 (6)0.0003 (5)0.0081 (4)−0.0096 (5)

Geometric parameters (Å, °)

C1—N11.330 (4)C11—C61.429 (5)
C1—C21.390 (5)C12—N41.323 (4)
C1—H11.01 (4)C12—C131.467 (4)
C2—C31.365 (5)C13—C171.383 (4)
C2—H21.08 (4)C13—C141.399 (5)
C3—C41.397 (5)C14—C151.372 (5)
C3—H30.92 (4)C14—H140.92 (4)
C4—C181.402 (4)C15—C161.385 (5)
C4—C51.453 (4)C15—H151.04 (4)
C5—N31.330 (4)C16—N21.339 (4)
C5—C121.434 (4)C16—H161.03 (3)
C7—C81.339 (5)C17—N21.354 (4)
C7—C61.418 (5)C17—C181.468 (4)
C7—H70.96 (3)C18—N11.351 (4)
C8—C91.406 (5)C6—N31.356 (4)
C8—H80.95 (4)Mn—N12.283 (3)
C9—C101.377 (5)Mn—N22.316 (3)
C9—H91.02 (4)Mn—Cl2.4644 (12)
C10—C111.409 (5)Mn—N1i2.283 (3)
C10—H100.97 (4)Mn—N2i2.316 (3)
C11—N41.357 (4)Mn—Cli2.4644 (12)
N1—C1—C2123.4 (4)C14—C15—C16119.0 (3)
N1—C1—H1119 (2)C14—C15—H15122 (2)
C2—C1—H1118 (2)C16—C15—H15118.7 (19)
C3—C2—C1118.1 (4)N2—C16—C15123.1 (3)
C3—C2—H2123.9 (19)N2—C16—H16117.5 (19)
C1—C2—H2118.0 (19)C15—C16—H16119 (2)
C2—C3—C4120.7 (3)N2—C17—C13123.1 (3)
C2—C3—H3123 (2)N2—C17—C18116.2 (3)
C4—C3—H3117 (2)C13—C17—C18120.6 (3)
C3—C4—C18117.1 (3)N1—C18—C4122.4 (3)
C3—C4—C5122.9 (3)N1—C18—C17117.5 (3)
C18—C4—C5119.9 (3)C4—C18—C17120.1 (3)
N3—C5—C12121.5 (3)N3—C6—C7120.1 (3)
N3—C5—C4118.7 (3)N3—C6—C11121.4 (3)
C12—C5—C4119.8 (3)C7—C6—C11118.5 (3)
C8—C7—C6120.8 (4)C1—N1—C18118.2 (3)
C8—C7—H7125 (2)C1—N1—Mn124.7 (2)
C6—C7—H7114 (2)C18—N1—Mn116.7 (2)
C7—C8—C9121.4 (4)C16—N2—C17117.5 (3)
C7—C8—H8121 (2)C16—N2—Mn125.4 (2)
C9—C8—H8118 (2)C17—N2—Mn116.0 (2)
C10—C9—C8120.0 (4)C5—N3—C6116.8 (3)
C10—C9—H9118 (2)C12—N4—C11116.6 (3)
C8—C9—H9122 (2)N1i—Mn—N1156.48 (15)
C9—C10—C11120.1 (4)N1i—Mn—N291.01 (10)
C9—C10—H10120 (2)N1—Mn—N271.63 (10)
C11—C10—H10119 (2)N1i—Mn—N2i71.63 (10)
N4—C11—C10119.5 (3)N1—Mn—N2i91.01 (10)
N4—C11—C6121.3 (3)N2—Mn—N2i86.22 (14)
C10—C11—C6119.2 (3)N1i—Mn—Cl100.04 (7)
N4—C12—C5122.5 (3)N1—Mn—Cl94.86 (8)
N4—C12—C13118.1 (3)N2—Mn—Cl165.09 (7)
C5—C12—C13119.3 (3)N2i—Mn—Cl87.79 (8)
C17—C13—C14118.0 (3)N1i—Mn—Cli94.86 (8)
C17—C13—C12120.1 (3)N1—Mn—Cli100.04 (7)
C14—C13—C12121.9 (3)N2—Mn—Cli87.79 (8)
C15—C14—C13119.4 (4)N2i—Mn—Cli165.09 (7)
C15—C14—H14119 (2)Cl—Mn—Cli101.09 (6)
C13—C14—H14122 (2)

Symmetry codes: (i) −x+2, y, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···Clii1.09 (3)2.67 (3)3.737 (4)168 (2)
C15—H15···Cliii1.04 (3)2.64 (3)3.648 (4)163 (3)

Symmetry codes: (ii) −x+1, y, −z+1/2; (iii) −x+5/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2884).

References

  • Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Che, G.-B., Li, W.-L., Kong, Z.-G., Su, Z.-S., Chu, B., Li, B., Zhang, Z.-Q., Hu, Z.-Z. & Chi, H.-J. (2006). Synth. Commun.36, 2519–2524.
  • Che, G.-B., Liu, C.-B., Liu, B., Wang, Q.-W. & Xu, Z.-L. (2008). CrystEngComm, 10, 184–191.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xu, Z.-L., Li, X.-Y., Che, G.-B., Liu, C.-B. & Wang, Q.-W. (2008). Chin. J. Struct. Chem.27, 593–597.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography