PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o384.
Published online 2009 January 23. doi:  10.1107/S1600536809002487
PMCID: PMC2968189

4-Benzyl-1-p-tolyl-1H-1,2,4-triazol-5(4H)-one

Abstract

In the title compound, C16H15N3O, the triazole ring makes dihedral angles of 7.08 (2) and 74.53 (3)° with the two outer aromatic rings. The crystal packing is stabilized by very short inter­molecular C—H(...)O hydrogen bonds and weak π–π stacking inter­actions [centroid-to-centroid distance 3.632 (3) Å], resulting in the formation of zigzag chains parallel to the b axis.

Related literature

For details of the biological activity of tris­ubstituted triazol­inones, see: Chang et al. (1993 [triangle], 1994 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For details of synthesis, see: Theodoridis (1998 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o384-scheme1.jpg

Experimental

Crystal data

  • C16H15N3O
  • M r = 265.31
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o384-efi1.jpg
  • a = 4.6130 (9) Å
  • b = 25.488 (5) Å
  • c = 11.460 (2) Å
  • β = 96.18 (3)°
  • V = 1339.6 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 113 (2) K
  • 0.18 × 0.04 × 0.04 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.985, T max = 0.997
  • 9828 measured reflections
  • 2333 independent reflections
  • 1998 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055
  • wR(F 2) = 0.150
  • S = 1.10
  • 2333 reflections
  • 183 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809002487/hg2470sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809002487/hg2470Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

4-Benzyl-1-p-tolyl-1H-1,2,4-triazol-5(4H)-one is a N-substituted triazolinone. It was reported that trisubstituted triazolinones were employed as nonpeptide angiotensin II receptor antagonists (Chang et al., 1993, 1994). In our effort to further study triazolinone derivatives as novel AII antagonists, the title compound was prepared. Here, we report the crystal structure of it.

In title compound, all bond lengths in the molecule are normal (Allen et al., 1987). The triazole ring N1–N3/C8–C9 makes dihedral angles of 7.08 (2) and 74.53 (3)° with the two phenyl rings (C1–C6, C11–C16). The relatively short distance of 3.632 (3) Å between the centroids of triazole ring N1–N3/C8–C9 and benzene ring C1–C6 [at -1 + x, y, z] indicates the presence of weak π–π interactions, The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds, linking the molecules into zigzag chains parallel to the b axis.

Experimental

1-p-Tolyl-1H-1,2,4-triazol-5(4H)one (1.75 g, 0.01 mol) was dissolved in 30 ml of acetic anhydride, 1.38 g (0.01 mol) potassium carbonate and 0.75 ml (0.01 mol) phenylmethanol were added. The solution was heated to reflux and stirred for 2 h and then cooled to room temperature. 100 ml of water was added and the deposited precipitate filtered. The precipitate was recrystallized with aetone and dried to give 4-benzyl-1-p-tolyl-1H-1,2,4-triazol-5(4H)one as a colorless power (2.40 g, yield 90.5%) (Theodoridis, 1998). Crystals suitable for X-ray diffraction were obtained through slow evaporation of the solution of the title compound in dichloromethane and ethyl acetate (v/v 1:1).

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å,, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 (1.5 times for methyl) times Ueq(C).

Figures

Fig. 1.
View of the title compound (I), with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C16H15N3OF(000) = 560
Mr = 265.31Dx = 1.315 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2910 reflections
a = 4.6130 (9) Åθ = 1.6–27.9°
b = 25.488 (5) ŵ = 0.09 mm1
c = 11.460 (2) ÅT = 113 K
β = 96.18 (3)°Block, colourless
V = 1339.6 (5) Å30.18 × 0.04 × 0.04 mm
Z = 4

Data collection

Rigaku Saturn diffractometer2333 independent reflections
Radiation source: rotating anode1998 reflections with I > 2σ(I)
confocalRint = 0.052
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −5→5
Tmin = 0.985, Tmax = 0.997k = −30→30
9828 measured reflectionsl = −13→13

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.150w = 1/[σ2(Fo2) + (0.0922P)2] where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2333 reflectionsΔρmax = 0.23 e Å3
183 parametersΔρmin = −0.26 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.4812 (3)0.20822 (5)0.27648 (11)0.0298 (4)
N10.5904 (3)0.17809 (5)0.09066 (12)0.0250 (4)
N20.5011 (4)0.19124 (6)−0.02578 (13)0.0328 (4)
N30.2711 (3)0.24033 (5)0.09506 (13)0.0267 (4)
C10.7986 (4)0.13699 (6)0.11575 (15)0.0247 (4)
C20.8840 (4)0.10765 (7)0.02333 (16)0.0295 (5)
H20.80610.1147−0.05330.035*
C31.0867 (4)0.06763 (7)0.04622 (16)0.0310 (5)
H31.14410.0483−0.01620.037*
C41.2065 (4)0.05553 (7)0.15959 (17)0.0281 (5)
C51.1164 (4)0.08567 (7)0.25051 (17)0.0305 (5)
H51.19280.07840.32720.037*
C60.9155 (4)0.12638 (7)0.23019 (16)0.0284 (5)
H60.86050.14620.29230.034*
C71.4263 (4)0.01155 (7)0.18258 (18)0.0337 (5)
H7A1.61750.02430.17200.051*
H7B1.3764−0.01670.12870.051*
H7C1.4243−0.00090.26160.051*
C80.4527 (4)0.20823 (6)0.16844 (16)0.0242 (4)
C90.3125 (4)0.22863 (7)−0.01808 (17)0.0328 (5)
H90.21610.2456−0.08280.039*
C100.0864 (4)0.28203 (7)0.13604 (18)0.0306 (5)
H10A0.05390.27520.21690.037*
H10B−0.10160.28170.08910.037*
C110.2243 (4)0.33566 (7)0.12782 (15)0.0265 (5)
C120.4397 (4)0.35251 (7)0.21405 (16)0.0326 (5)
H120.49660.33100.27790.039*
C130.5705 (5)0.40130 (8)0.20553 (18)0.0370 (5)
H130.71580.41210.26310.044*
C140.4840 (5)0.43383 (7)0.11114 (17)0.0374 (5)
H140.56910.46670.10570.045*
C150.2713 (5)0.41719 (8)0.02540 (18)0.0388 (5)
H150.21420.4389−0.03810.047*
C160.1420 (4)0.36866 (7)0.03274 (17)0.0328 (5)
H16−0.00060.3579−0.02590.039*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0334 (8)0.0304 (7)0.0250 (7)0.0016 (5)0.0005 (6)−0.0033 (5)
N10.0277 (9)0.0245 (8)0.0224 (8)0.0005 (6)0.0004 (6)0.0006 (6)
N20.0443 (10)0.0300 (9)0.0235 (9)0.0029 (8)0.0013 (7)0.0019 (7)
N30.0273 (9)0.0239 (8)0.0284 (9)0.0020 (6)0.0012 (7)0.0001 (6)
C10.0235 (10)0.0226 (9)0.0282 (10)−0.0032 (7)0.0032 (8)0.0008 (7)
C20.0331 (11)0.0297 (10)0.0266 (10)−0.0023 (8)0.0066 (8)0.0018 (7)
C30.0328 (11)0.0295 (10)0.0326 (11)−0.0003 (8)0.0125 (9)−0.0039 (8)
C40.0217 (10)0.0250 (9)0.0384 (11)−0.0046 (7)0.0063 (8)0.0005 (8)
C50.0273 (11)0.0337 (11)0.0295 (10)−0.0012 (8)−0.0012 (8)0.0006 (8)
C60.0288 (11)0.0274 (10)0.0285 (11)0.0000 (8)0.0013 (8)−0.0038 (7)
C70.0286 (11)0.0288 (10)0.0440 (12)0.0015 (8)0.0053 (9)0.0009 (9)
C80.0244 (10)0.0217 (9)0.0258 (10)−0.0045 (7)0.0002 (7)−0.0009 (7)
C90.0377 (12)0.0308 (10)0.0287 (11)0.0021 (8)−0.0019 (9)0.0032 (8)
C100.0258 (11)0.0271 (10)0.0395 (11)0.0012 (8)0.0056 (9)0.0002 (8)
C110.0265 (10)0.0251 (9)0.0292 (10)0.0033 (7)0.0088 (8)−0.0008 (7)
C120.0383 (12)0.0303 (10)0.0292 (10)0.0032 (8)0.0035 (9)−0.0023 (8)
C130.0376 (12)0.0362 (11)0.0365 (12)−0.0032 (9)0.0013 (9)−0.0107 (9)
C140.0443 (13)0.0280 (10)0.0421 (13)−0.0082 (9)0.0151 (10)−0.0037 (9)
C150.0486 (14)0.0325 (11)0.0360 (12)−0.0005 (9)0.0075 (10)0.0066 (9)
C160.0332 (12)0.0321 (10)0.0319 (11)0.0009 (8)−0.0008 (9)0.0002 (8)

Geometric parameters (Å, °)

O1—C81.231 (2)C7—H7A0.9600
N1—C81.382 (2)C7—H7B0.9600
N1—N21.394 (2)C7—H7C0.9600
N1—C11.429 (2)C9—H90.9300
N2—C91.299 (2)C10—C111.515 (2)
N3—C91.364 (2)C10—H10A0.9700
N3—C81.388 (2)C10—H10B0.9700
N3—C101.471 (2)C11—C121.392 (3)
C1—C21.388 (2)C11—C161.397 (3)
C1—C61.390 (2)C12—C131.390 (3)
C2—C31.390 (3)C12—H120.9300
C2—H20.9300C13—C141.387 (3)
C3—C41.391 (3)C13—H130.9300
C3—H30.9300C14—C151.379 (3)
C4—C51.394 (3)C14—H140.9300
C4—C71.516 (2)C15—C161.379 (3)
C5—C61.394 (3)C15—H150.9300
C5—H50.9300C16—H160.9300
C6—H60.9300
C8—N1—N2112.01 (14)O1—C8—N1129.94 (16)
C8—N1—C1128.55 (15)O1—C8—N3126.98 (16)
N2—N1—C1119.43 (14)N1—C8—N3103.07 (15)
C9—N2—N1104.01 (15)N2—C9—N3112.84 (16)
C9—N3—C8108.06 (15)N2—C9—H9123.6
C9—N3—C10127.37 (16)N3—C9—H9123.6
C8—N3—C10124.41 (15)N3—C10—C11111.73 (14)
C2—C1—C6120.14 (16)N3—C10—H10A109.3
C2—C1—N1118.77 (16)C11—C10—H10A109.3
C6—C1—N1121.10 (15)N3—C10—H10B109.3
C1—C2—C3119.47 (17)C11—C10—H10B109.3
C1—C2—H2120.3H10A—C10—H10B107.9
C3—C2—H2120.3C12—C11—C16118.79 (17)
C2—C3—C4122.05 (17)C12—C11—C10120.45 (16)
C2—C3—H3119.0C16—C11—C10120.75 (17)
C4—C3—H3119.0C13—C12—C11120.55 (18)
C3—C4—C5117.13 (17)C13—C12—H12119.7
C3—C4—C7121.17 (17)C11—C12—H12119.7
C5—C4—C7121.71 (17)C14—C13—C12119.93 (19)
C4—C5—C6122.13 (18)C14—C13—H13120.0
C4—C5—H5118.9C12—C13—H13120.0
C6—C5—H5118.9C15—C14—C13119.65 (18)
C1—C6—C5119.08 (17)C15—C14—H14120.2
C1—C6—H6120.5C13—C14—H14120.2
C5—C6—H6120.5C14—C15—C16120.78 (19)
C4—C7—H7A109.5C14—C15—H15119.6
C4—C7—H7B109.5C16—C15—H15119.6
H7A—C7—H7B109.5C15—C16—C11120.30 (18)
C4—C7—H7C109.5C15—C16—H16119.8
H7A—C7—H7C109.5C11—C16—H16119.8
H7B—C7—H7C109.5
C8—N1—N2—C9−0.07 (19)C9—N3—C8—O1178.18 (18)
C1—N1—N2—C9179.13 (15)C10—N3—C8—O12.4 (3)
C8—N1—C1—C2172.54 (16)C9—N3—C8—N1−0.95 (18)
N2—N1—C1—C2−6.5 (2)C10—N3—C8—N1−176.71 (14)
C8—N1—C1—C6−7.7 (3)N1—N2—C9—N3−0.6 (2)
N2—N1—C1—C6173.26 (15)C8—N3—C9—N21.0 (2)
C6—C1—C2—C30.1 (3)C10—N3—C9—N2176.61 (16)
N1—C1—C2—C3179.85 (15)C9—N3—C10—C11−75.1 (2)
C1—C2—C3—C40.5 (3)C8—N3—C10—C1199.78 (19)
C2—C3—C4—C5−0.5 (3)N3—C10—C11—C12−80.5 (2)
C2—C3—C4—C7179.72 (15)N3—C10—C11—C1698.3 (2)
C3—C4—C5—C6−0.1 (3)C16—C11—C12—C13−0.1 (3)
C7—C4—C5—C6179.67 (16)C10—C11—C12—C13178.78 (17)
C2—C1—C6—C5−0.7 (3)C11—C12—C13—C140.7 (3)
N1—C1—C6—C5179.57 (15)C12—C13—C14—C15−0.9 (3)
C4—C5—C6—C10.7 (3)C13—C14—C15—C160.4 (3)
N2—N1—C8—O1−178.45 (17)C14—C15—C16—C110.3 (3)
C1—N1—C8—O12.4 (3)C12—C11—C16—C15−0.4 (3)
N2—N1—C8—N30.64 (18)C10—C11—C16—C15−179.28 (17)
C1—N1—C8—N3−178.46 (15)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C9—H9···O1i0.932.193.114 (2)174

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2470).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Chang, L. L., Ashton, W. T., Flanagan, K. L., Chen, T.-B., O’Malley, S. S., Zingaro, G. J., Siegl, P. K. S., Kivlighn, S. D., Lotti, V. J. & Greenlee, W. J. (1994). J. Med. Chem.37, 4464–4478. [PubMed]
  • Chang, L. L., Ashton, W. T., Flanagan, K. L., Strelitz, R. A., MacCoss, M., Greenlee, W. J., Chang, R. S. L., Lotti, V. J., Faust, K. A., Chen, T.-B., Bunting, P., Zingaro, G. J., Kivlighn, S. D. & Siegl, P. K. S. (1993). J. Med. Chem.36, 2558–2568. [PubMed]
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Theodoridis, G. (1998). Tetrahedron Lett.39, 9365–9368.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography