PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o236.
Published online 2009 January 8. doi:  10.1107/S160053680804395X
PMCID: PMC2968183

(Z)-Ethyl 2,4-diphenyl-3-(propyl­amino)­but-2-enoate

Abstract

The title compound, C21H25NO2, adopts a Z conformation about the C=C double bond. The mol­ecular structure is stabilized by an intra­molecular N—H(...)O hydrogen bond and the dihedral angle between the aromatic ring planes is 76.04 (12)°. The atoms of the ethyl substituent are disordered over two sets of sites in a 0.60 (2):0.40 (2) ratio.

Related literature

For the synthesis, see: Du et al. (2006 [triangle]). For background, see: Xue et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o236-scheme1.jpg

Experimental

Crystal data

  • C21H25NO2
  • M r = 323.42
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o236-efi1.jpg
  • a = 12.186 (2) Å
  • b = 8.4771 (17) Å
  • c = 19.080 (4) Å
  • β = 106.33 (3)°
  • V = 1891.4 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 293 (2) K
  • 0.28 × 0.22 × 0.18 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.980, T max = 0.987
  • 12325 measured reflections
  • 3323 independent reflections
  • 2290 reflections with I > 2σ(I)
  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060
  • wR(F 2) = 0.198
  • S = 1.06
  • 3323 reflections
  • 232 parameters
  • 5 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.24 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804395X/hb2886sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804395X/hb2886Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Technology Fund of Tianjin Bureau of Public Health (grant No. 04KY36) for financial support.

supplementary crystallographic information

Comment

Enamine compounds have been considered to be potential antibacterial agents (Xue et al., 2007) and found important application in the synthesis of N-containint heterocylcles (Du et al., 2006). To further study the structure and activity relationship, we determine the crystal structure of the title compound, (I).

In the molecular structure (Fig. 1), the torsion angles of N1—C11—C7—C6 and C8—C7—C11—C12 are -177.32 (17) and -175.14 (16)°, respectively. Furthermore, the distances C7—C11 and C11—N1 are 1.381 (3), 1.348 (3)Å, respectively. Both of these features confirm the enamine structure formation. The two phenyl rings constructed an angle of 76.04 (12)°. The molecule adopts a Z-conformation, being stabilised by an intramolecular N—H···O hydrogen bond (Table 1).

Experimental

The title compound was prepared according to the method of the literature (Du, et al., 2006). Colourless blocks of (I) were grown from a mixture of ethyl actate and petroleum ether.

Refinement

The non-N H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(CH and CH2) or 1.5Ueq(CH3). The N—H distance was refined with the restraint of 0.90 (1) Å, and the C19—C20, C20—C21, C9—C10 and C9—C10' with the restraint of 1.54 (1) Å. The ethyl radical of the ester moiety was found to be disordered, with the site occupancy ratio of 0.40 (2):0.60 (2).

Figures

Fig. 1.
The molecular structure of (I) with 50% probability displacement ellipsoids. The dashed line indicates the intramolecular N—H···O hydrogen bond.

Crystal data

C21H25NO2F(000) = 696
Mr = 323.42Dx = 1.136 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4099 reflections
a = 12.186 (2) Åθ = 2.2–27.1°
b = 8.4771 (17) ŵ = 0.07 mm1
c = 19.080 (4) ÅT = 293 K
β = 106.33 (3)°Block, colourless
V = 1891.4 (7) Å30.28 × 0.22 × 0.18 mm
Z = 4

Data collection

Rigaku Saturn diffractometer3323 independent reflections
Radiation source: rotating anode2290 reflections with I > 2σ(I)
confocalRint = 0.034
Detector resolution: 7.31 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −9→10
Tmin = 0.980, Tmax = 0.987l = −21→22
12325 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.198w = 1/[σ2(Fo2) + (0.1207P)2 + 0.019P] where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3323 reflectionsΔρmax = 0.24 e Å3
232 parametersΔρmin = −0.19 e Å3
5 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.079 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
O10.98880 (16)0.7415 (2)0.24987 (10)0.0936 (6)
O21.07264 (14)0.97745 (19)0.24972 (8)0.0791 (5)
N10.95170 (17)1.1941 (2)0.16036 (11)0.0710 (6)
C10.7770 (2)0.7362 (3)0.07667 (13)0.0723 (7)
H10.82130.76550.04630.087*
C20.6935 (2)0.6239 (3)0.05278 (16)0.0864 (8)
H2A0.68120.57940.00670.104*
C30.6286 (2)0.5778 (3)0.09719 (18)0.0906 (8)
H3A0.57190.50180.08140.109*
C40.6473 (2)0.6434 (4)0.16427 (18)0.0977 (9)
H4A0.60380.61150.19470.117*
C50.7302 (2)0.7568 (3)0.18764 (14)0.0829 (8)
H5A0.74150.80070.23380.099*
C60.79728 (17)0.8072 (2)0.14437 (11)0.0591 (6)
C70.88662 (17)0.9301 (2)0.16911 (10)0.0572 (6)
C80.99038 (19)0.8903 (3)0.22513 (12)0.0654 (6)
C91.0852 (3)0.6899 (4)0.30878 (18)0.1159 (11)0.60 (2)
H9A1.10750.58550.29710.139*0.60 (2)
H9B1.14890.76020.31120.139*0.60 (2)
C101.0665 (11)0.684 (2)0.3778 (4)0.133 (4)0.60 (2)
H10A1.13530.65120.41330.199*0.60 (2)
H10B1.00630.61060.37700.199*0.60 (2)
H10C1.04500.78710.39040.199*0.60 (2)
C9'1.0852 (3)0.6899 (4)0.30878 (18)0.1159 (11)0.40 (2)
H9'A1.13280.77870.33060.139*0.40 (2)
H9'B1.13140.61460.29130.139*0.40 (2)
C10'1.0339 (12)0.616 (2)0.3618 (8)0.111 (4)0.40 (2)
H10D1.09350.57880.40300.166*0.40 (2)
H10E0.98710.52850.33920.166*0.40 (2)
H10F0.98790.69180.37790.166*0.40 (2)
C110.87065 (17)1.0815 (2)0.14123 (11)0.0588 (6)
C120.75990 (17)1.1280 (2)0.08755 (11)0.0618 (6)
H12A0.73361.22500.10450.074*
H12B0.70361.04710.08760.074*
C130.76341 (16)1.1525 (2)0.00975 (11)0.0565 (5)
C140.6757 (2)1.2334 (3)−0.03842 (14)0.0745 (7)
H14A0.61501.2716−0.02280.089*
C150.6773 (3)1.2584 (3)−0.11014 (15)0.0918 (8)
H15A0.61851.3148−0.14190.110*
C160.7651 (2)1.2003 (3)−0.13433 (14)0.0849 (8)
H16A0.76631.2175−0.18220.102*
C170.8495 (2)1.1182 (3)−0.08805 (14)0.0803 (7)
H17A0.90851.0766−0.10450.096*
C180.84946 (18)1.0953 (3)−0.01624 (12)0.0706 (6)
H18A0.90931.03970.01510.085*
C190.9397 (2)1.3609 (3)0.14108 (16)0.0837 (8)
H19A0.90851.41670.17550.100*
H19B0.88671.37280.09280.100*
C201.0546 (3)1.4324 (3)0.14196 (19)0.1120 (11)
H20A1.04461.54520.13440.134*
H20B1.10701.41670.19020.134*
C211.1081 (3)1.3697 (4)0.0878 (3)0.1381 (14)
H21A1.18171.41770.09460.207*
H21B1.06051.39290.03960.207*
H21C1.11691.25760.09370.207*
H1A1.0180 (11)1.163 (2)0.1924 (9)0.065 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0861 (12)0.0898 (12)0.0851 (13)0.0094 (9)−0.0083 (10)0.0275 (9)
O20.0732 (11)0.0914 (11)0.0625 (10)0.0011 (8)0.0026 (8)−0.0069 (8)
N10.0710 (13)0.0671 (11)0.0688 (13)−0.0032 (9)0.0099 (11)0.0003 (9)
C10.0817 (16)0.0716 (13)0.0667 (15)−0.0068 (11)0.0257 (13)−0.0040 (11)
C20.0884 (17)0.0779 (15)0.0873 (18)−0.0122 (13)0.0156 (15)−0.0051 (13)
C30.0755 (16)0.0790 (16)0.107 (2)−0.0092 (12)0.0090 (16)0.0195 (15)
C40.0823 (18)0.119 (2)0.094 (2)−0.0134 (16)0.0297 (17)0.0302 (18)
C50.0798 (17)0.1103 (19)0.0628 (15)−0.0056 (14)0.0270 (14)0.0115 (13)
C60.0591 (12)0.0645 (12)0.0522 (12)0.0079 (9)0.0132 (10)0.0094 (10)
C70.0629 (12)0.0659 (12)0.0428 (11)0.0084 (9)0.0148 (9)0.0027 (9)
C80.0712 (14)0.0745 (13)0.0487 (12)0.0090 (11)0.0138 (11)−0.0020 (11)
C90.096 (2)0.133 (2)0.094 (2)0.0225 (18)−0.0132 (18)0.040 (2)
C100.102 (6)0.194 (10)0.081 (5)0.043 (6)−0.010 (4)−0.022 (5)
C9'0.096 (2)0.133 (2)0.094 (2)0.0225 (18)−0.0132 (18)0.040 (2)
C10'0.119 (8)0.129 (9)0.060 (6)−0.016 (7)−0.015 (5)0.041 (6)
C110.0645 (12)0.0669 (12)0.0475 (11)0.0055 (9)0.0197 (10)−0.0032 (9)
C120.0585 (12)0.0668 (12)0.0617 (13)0.0101 (9)0.0196 (10)0.0044 (10)
C130.0568 (12)0.0509 (10)0.0576 (12)−0.0005 (8)0.0092 (10)0.0023 (9)
C140.0717 (15)0.0751 (14)0.0690 (16)0.0136 (11)0.0071 (12)0.0039 (12)
C150.095 (2)0.0952 (18)0.0692 (17)0.0136 (14)−0.0033 (15)0.0173 (14)
C160.0953 (19)0.0984 (18)0.0556 (14)−0.0162 (15)0.0123 (14)0.0129 (13)
C170.0747 (16)0.1049 (18)0.0626 (15)0.0008 (13)0.0213 (13)0.0083 (13)
C180.0618 (13)0.0874 (15)0.0608 (14)0.0117 (11)0.0144 (11)0.0121 (11)
C190.0904 (17)0.0636 (14)0.099 (2)−0.0011 (12)0.0290 (15)−0.0085 (13)
C200.129 (3)0.0726 (16)0.138 (3)−0.0143 (16)0.044 (2)−0.0030 (17)
C210.136 (3)0.100 (2)0.205 (4)−0.006 (2)0.092 (3)−0.004 (2)

Geometric parameters (Å, °)

O1—C81.349 (3)C10'—H10E0.9600
O1—C91.446 (3)C10'—H10F0.9600
O2—C81.227 (3)C11—C121.499 (3)
N1—C111.348 (3)C12—C131.511 (3)
N1—C191.458 (3)C12—H12A0.9700
N1—H1A0.905 (10)C12—H12B0.9700
C1—C21.374 (3)C13—C181.369 (3)
C1—C61.383 (3)C13—C141.381 (3)
C1—H10.9300C14—C151.390 (4)
C2—C31.369 (4)C14—H14A0.9300
C2—H2A0.9300C15—C161.370 (4)
C3—C41.355 (4)C15—H15A0.9300
C3—H3A0.9300C16—C171.346 (3)
C4—C51.375 (4)C16—H16A0.9300
C4—H4A0.9300C17—C181.384 (3)
C5—C61.383 (3)C17—H17A0.9300
C5—H5A0.9300C18—H18A0.9300
C6—C71.485 (3)C19—C201.522 (3)
C7—C111.381 (3)C19—H19A0.9700
C7—C81.448 (3)C19—H19B0.9700
C9—C101.399 (7)C20—C211.467 (4)
C9—H9A0.9700C20—H20A0.9700
C9—H9B0.9700C20—H20B0.9700
C10—H10A0.9600C21—H21A0.9600
C10—H10B0.9600C21—H21B0.9600
C10—H10C0.9600C21—H21C0.9600
C10'—H10D0.9600
C8—O1—C9117.8 (2)N1—C11—C12116.66 (18)
C11—N1—C19127.2 (2)C7—C11—C12120.63 (19)
C11—N1—H1A114.9 (13)C11—C12—C13116.00 (16)
C19—N1—H1A117.5 (13)C11—C12—H12A108.3
C2—C1—C6122.2 (2)C13—C12—H12A108.3
C2—C1—H1118.9C11—C12—H12B108.3
C6—C1—H1118.9C13—C12—H12B108.3
C3—C2—C1119.7 (3)H12A—C12—H12B107.4
C3—C2—H2A120.2C18—C13—C14117.6 (2)
C1—C2—H2A120.2C18—C13—C12122.92 (19)
C4—C3—C2119.6 (3)C14—C13—C12119.44 (18)
C4—C3—H3A120.2C13—C14—C15120.5 (2)
C2—C3—H3A120.2C13—C14—H14A119.7
C3—C4—C5120.4 (2)C15—C14—H14A119.7
C3—C4—H4A119.8C16—C15—C14120.4 (2)
C5—C4—H4A119.8C16—C15—H15A119.8
C4—C5—C6121.8 (2)C14—C15—H15A119.8
C4—C5—H5A119.1C17—C16—C15119.3 (2)
C6—C5—H5A119.1C17—C16—H16A120.3
C1—C6—C5116.3 (2)C15—C16—H16A120.3
C1—C6—C7121.66 (17)C16—C17—C18120.6 (2)
C5—C6—C7122.1 (2)C16—C17—H17A119.7
C11—C7—C8120.0 (2)C18—C17—H17A119.7
C11—C7—C6121.21 (19)C13—C18—C17121.5 (2)
C8—C7—C6118.74 (18)C13—C18—H18A119.2
O2—C8—O1121.3 (2)C17—C18—H18A119.2
O2—C8—C7126.3 (2)N1—C19—C20110.9 (2)
O1—C8—C7112.4 (2)N1—C19—H19A109.5
C10—C9—O1115.5 (5)C20—C19—H19A109.5
C10—C9—H9A108.4N1—C19—H19B109.5
O1—C9—H9A108.4C20—C19—H19B109.5
C10—C9—H9B108.4H19A—C19—H19B108.0
O1—C9—H9B108.4C21—C20—C19115.9 (3)
H9A—C9—H9B107.5C21—C20—H20A108.3
C9—C10—H10A109.5C19—C20—H20A108.3
C9—C10—H10B109.5C21—C20—H20B108.3
H10A—C10—H10B109.5C19—C20—H20B108.3
C9—C10—H10C109.5H20A—C20—H20B107.4
H10A—C10—H10C109.5C20—C21—H21A109.5
H10B—C10—H10C109.5C20—C21—H21B109.5
H10D—C10'—H10E109.5H21A—C21—H21B109.5
H10D—C10'—H10F109.5C20—C21—H21C109.5
H10E—C10'—H10F109.5H21A—C21—H21C109.5
N1—C11—C7122.7 (2)H21B—C21—H21C109.5
C6—C1—C2—C3−0.9 (4)C19—N1—C11—C127.4 (3)
C1—C2—C3—C40.0 (4)C8—C7—C11—N14.6 (3)
C2—C3—C4—C50.6 (4)C6—C7—C11—N1−177.32 (17)
C3—C4—C5—C6−0.3 (4)C8—C7—C11—C12−175.14 (16)
C2—C1—C6—C51.2 (3)C6—C7—C11—C122.9 (3)
C2—C1—C6—C7−179.1 (2)N1—C11—C12—C1371.9 (2)
C4—C5—C6—C1−0.5 (4)C7—C11—C12—C13−108.3 (2)
C4—C5—C6—C7179.7 (2)C11—C12—C13—C1817.9 (3)
C1—C6—C7—C1174.3 (3)C11—C12—C13—C14−163.29 (19)
C5—C6—C7—C11−105.9 (2)C18—C13—C14—C15−1.5 (3)
C1—C6—C7—C8−107.6 (2)C12—C13—C14—C15179.6 (2)
C5—C6—C7—C872.1 (3)C13—C14—C15—C161.2 (4)
C9—O1—C8—O22.7 (3)C14—C15—C16—C170.3 (4)
C9—O1—C8—C7−176.8 (2)C15—C16—C17—C18−1.4 (4)
C11—C7—C8—O2−3.9 (3)C14—C13—C18—C170.4 (3)
C6—C7—C8—O2178.02 (18)C12—C13—C18—C17179.3 (2)
C11—C7—C8—O1175.63 (17)C16—C17—C18—C131.1 (4)
C6—C7—C8—O1−2.5 (2)C11—N1—C19—C20−154.4 (2)
C8—O1—C9—C10103.2 (10)N1—C19—C20—C2164.4 (4)
C19—N1—C11—C7−172.39 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···O20.91 (2)1.93 (2)2.653 (3)136 (1)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2886).

References

  • Du, Y., Liu, R., Linn, G. & Zhao, K. (2006). Org. Lett.8, 5919–5922. [PubMed]
  • Rigaku/MSC (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Xue, J. Y., Xiao, Z. P., Shi, L., Tan, S. H., Li, H. Q. & Zhu, H. L. (2007). Aust. J. Chem.60, 957–962.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography