PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o434.
Published online 2009 January 31. doi:  10.1107/S1600536809003080
PMCID: PMC2968182

Methyl 4-but­oxy-3-methoxy­benzoate

Abstract

The title compound, C13H18O4, is an inter­mediate product in the synthesis of quinazoline derivatives. Crystal structure analysis shows that the benzene–butoxy Car—O—C—C torsion angle is 175.3 (2)° and that the benzene–methoxycarbonyl Car—C—O—C torsion angle is 175.2 (2)°. Torsion angles close to 180° indicate that the molecule is almost planar.

Related literature

For general background, see: Knesl et al. (2006 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o434-scheme1.jpg

Experimental

Crystal data

  • C13H18O4
  • M r = 238.27
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o434-efi1.jpg
  • a = 7.9660 (16) Å
  • b = 9.1630 (18) Å
  • c = 10.143 (2) Å
  • α = 64.80 (2)°
  • β = 70.96 (3)°
  • γ = 79.26 (3)°
  • V = 632.3 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 (2) K
  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.973, T max = 0.991
  • 2474 measured reflections
  • 2294 independent reflections
  • 1567 reflections with I > 2σ(I)
  • R int = 0.067
  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.168
  • S = 1.00
  • 2294 reflections
  • 154 parameters
  • H-atom parameters constrained
  • Δρmax = 0.18 e Å−3
  • Δρmin = −0.21 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PLATON (Spek, 2003 [triangle]).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003080/wk2098sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003080/wk2098Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

As part of our ongoing studies on quinazoline derivatives (Knesl et al., 2006), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C4–C9) is, of course, planar.

Experimental

For the preparation of the title compound, methyl 3-methoxy-4-hydroxybenzoate (55 mmol), 1-bromobutane (110 mmol) and potassium carbonate (165 mmol) were mixed with DMF (60 ml), and then the mixture was heated to reflux for 2 h. Reaction progress was monitored by TLC. After cooling and filtration, the title compound was obtained (yield 92%, m.p. 317 K). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme.

Crystal data

C13H18O4Z = 2
Mr = 238.27F(000) = 256
Triclinic, P1Dx = 1.252 Mg m3
Hall symbol: -P 1Melting point: 317 K
a = 7.9660 (16) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.1630 (18) ÅCell parameters from 25 reflections
c = 10.143 (2) Åθ = 9–12°
α = 64.80 (2)°µ = 0.09 mm1
β = 70.96 (3)°T = 293 K
γ = 79.26 (3)°Block, colourless
V = 632.3 (2) Å30.30 × 0.20 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer1567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
graphiteθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 0→9
Absorption correction: ψ scan (North et al., 1968)k = −10→11
Tmin = 0.973, Tmax = 0.991l = −11→12
2474 measured reflections3 standard reflections every 200 reflections
2294 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.07P)2 + 0.43P] where P = (Fo2 + 2Fc2)/3
2294 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = −0.21 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3147 (2)0.6241 (2)0.05115 (19)0.0488 (5)
O20.0656 (2)0.4271 (2)0.15700 (19)0.0516 (5)
O30.0117 (3)0.1304 (3)0.7289 (2)0.0733 (7)
O40.1887 (2)0.2708 (2)0.75552 (19)0.0570 (5)
C10.6296 (5)1.0667 (4)−0.4050 (3)0.0749 (10)
H1A0.71581.1438−0.43580.112*
H1B0.52011.1226−0.42450.112*
H1C0.67320.9990−0.46120.112*
C20.5977 (4)0.9645 (4)−0.2387 (3)0.0606 (8)
H2A0.55691.0348−0.18380.073*
H2B0.71010.9117−0.22040.073*
C30.4645 (3)0.8369 (3)−0.1746 (3)0.0473 (6)
H3A0.34930.8884−0.18650.057*
H3B0.50160.7675−0.23050.057*
C40.4487 (4)0.7377 (3)−0.0111 (3)0.0493 (7)
H4A0.56190.68060.00020.059*
H4B0.41890.80780.04380.059*
C50.2767 (3)0.5331 (3)0.2032 (3)0.0410 (6)
C60.3595 (3)0.5399 (3)0.3000 (3)0.0495 (7)
H6A0.45040.60980.26220.059*
C70.3085 (3)0.4438 (3)0.4524 (3)0.0477 (6)
H7A0.36390.45050.51720.057*
C80.1752 (3)0.3373 (3)0.5099 (3)0.0443 (6)
C90.0934 (3)0.3285 (3)0.4133 (3)0.0438 (6)
H9A0.00510.25590.45160.053*
C100.1400 (3)0.4256 (3)0.2606 (3)0.0401 (6)
C11−0.0929 (4)0.3439 (4)0.2120 (3)0.0564 (8)
H11A−0.13140.35420.12780.085*
H11B−0.18410.38950.27490.085*
H11C−0.07030.23170.27020.085*
C120.1161 (3)0.2332 (3)0.6753 (3)0.0468 (6)
C130.1295 (4)0.1866 (4)0.9164 (3)0.0661 (8)
H13A0.18900.22390.96380.099*
H13B0.15620.07290.94250.099*
H13C0.00340.20660.95110.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0478 (10)0.0490 (11)0.0479 (10)−0.0110 (8)−0.0085 (8)−0.0176 (8)
O20.0480 (10)0.0598 (12)0.0497 (10)−0.0140 (9)−0.0114 (8)−0.0211 (9)
O30.0858 (16)0.0749 (15)0.0559 (12)−0.0289 (13)−0.0188 (11)−0.0135 (11)
O40.0592 (12)0.0667 (13)0.0460 (10)−0.0054 (10)−0.0141 (9)−0.0226 (9)
C10.076 (2)0.065 (2)0.066 (2)−0.0173 (18)−0.0084 (16)−0.0119 (16)
C20.0603 (18)0.0566 (18)0.0607 (17)−0.0145 (15)−0.0097 (14)−0.0198 (14)
C30.0466 (15)0.0402 (15)0.0547 (15)0.0003 (12)−0.0074 (11)−0.0241 (12)
C40.0486 (15)0.0425 (15)0.0589 (16)−0.0092 (12)−0.0099 (12)−0.0228 (12)
C50.0390 (13)0.0368 (13)0.0485 (13)0.0017 (11)−0.0093 (10)−0.0215 (11)
C60.0443 (15)0.0510 (16)0.0575 (16)−0.0088 (12)−0.0119 (12)−0.0245 (13)
C70.0444 (15)0.0497 (16)0.0563 (15)0.0033 (12)−0.0201 (12)−0.0254 (12)
C80.0394 (13)0.0425 (14)0.0528 (15)0.0072 (11)−0.0137 (11)−0.0236 (12)
C90.0403 (14)0.0397 (14)0.0536 (15)0.0013 (11)−0.0115 (11)−0.0228 (11)
C100.0361 (13)0.0417 (14)0.0498 (14)0.0055 (11)−0.0125 (10)−0.0274 (11)
C110.0539 (17)0.0673 (19)0.0517 (15)−0.0164 (15)−0.0143 (12)−0.0217 (14)
C120.0418 (14)0.0487 (16)0.0534 (15)0.0075 (12)−0.0184 (12)−0.0235 (12)
C130.0680 (19)0.079 (2)0.0490 (16)−0.0016 (17)−0.0149 (14)−0.0253 (15)

Geometric parameters (Å, °)

O1—C51.364 (3)C4—H4B0.9700
O1—C41.427 (3)C5—C61.375 (3)
O2—C101.359 (3)C5—C101.411 (3)
O2—C111.423 (3)C6—C71.376 (4)
O3—C121.198 (3)C6—H6A0.9300
O4—C121.317 (3)C7—C81.385 (3)
O4—C131.429 (3)C7—H7A0.9300
C1—C21.501 (4)C8—C91.376 (3)
C1—H1A0.9600C8—C121.495 (4)
C1—H1B0.9600C9—C101.379 (3)
C1—H1C0.9600C9—H9A0.9300
C2—C31.510 (4)C11—H11A0.9600
C2—H2A0.9700C11—H11B0.9600
C2—H2B0.9700C11—H11C0.9600
C3—C41.488 (4)C13—H13A0.9600
C3—H3A0.9700C13—H13B0.9600
C3—H3B0.9700C13—H13C0.9600
C4—H4A0.9700
C5—O1—C4116.99 (19)C5—C6—C7120.4 (2)
C10—O2—C11117.84 (19)C5—C6—H6A119.8
C12—O4—C13116.2 (2)C7—C6—H6A119.8
C2—C1—H1A109.5C6—C7—C8120.5 (2)
C2—C1—H1B109.5C6—C7—H7A119.8
H1A—C1—H1B109.5C8—C7—H7A119.8
C2—C1—H1C109.5C9—C8—C7119.4 (2)
H1A—C1—H1C109.5C9—C8—C12119.2 (2)
H1B—C1—H1C109.5C7—C8—C12121.4 (2)
C1—C2—C3115.2 (3)C8—C9—C10121.2 (2)
C1—C2—H2A108.5C8—C9—H9A119.4
C3—C2—H2A108.5C10—C9—H9A119.4
C1—C2—H2B108.5O2—C10—C9125.5 (2)
C3—C2—H2B108.5O2—C10—C5115.7 (2)
H2A—C2—H2B107.5C9—C10—C5118.9 (2)
C4—C3—C2111.0 (2)O2—C11—H11A109.5
C4—C3—H3A109.4O2—C11—H11B109.5
C2—C3—H3A109.4H11A—C11—H11B109.5
C4—C3—H3B109.4O2—C11—H11C109.5
C2—C3—H3B109.4H11A—C11—H11C109.5
H3A—C3—H3B108.0H11B—C11—H11C109.5
O1—C4—C3110.7 (2)O3—C12—O4124.0 (2)
O1—C4—H4A109.5O3—C12—C8123.9 (2)
C3—C4—H4A109.5O4—C12—C8112.0 (2)
O1—C4—H4B109.5O4—C13—H13A109.5
C3—C4—H4B109.5O4—C13—H13B109.5
H4A—C4—H4B108.1H13A—C13—H13B109.5
O1—C5—C6125.3 (2)O4—C13—H13C109.5
O1—C5—C10115.1 (2)H13A—C13—H13C109.5
C6—C5—C10119.7 (2)H13B—C13—H13C109.5
C1—C2—C3—C4177.4 (3)C11—O2—C10—C5−168.8 (2)
C5—O1—C4—C3−175.3 (2)C8—C9—C10—O2−179.1 (2)
C2—C3—C4—O1176.4 (2)C8—C9—C10—C51.3 (4)
C4—O1—C5—C6−1.4 (4)O1—C5—C10—O20.2 (3)
C4—O1—C5—C10178.3 (2)C6—C5—C10—O2179.9 (2)
O1—C5—C6—C7179.0 (2)O1—C5—C10—C9179.8 (2)
C10—C5—C6—C7−0.7 (4)C6—C5—C10—C9−0.4 (4)
C5—C6—C7—C81.0 (4)C13—O4—C12—O3−3.1 (4)
C6—C7—C8—C9−0.2 (4)C13—O4—C12—C8175.2 (2)
C6—C7—C8—C12−179.3 (2)C9—C8—C12—O37.1 (4)
C7—C8—C9—C10−0.9 (4)C7—C8—C12—O3−173.9 (3)
C12—C8—C9—C10178.1 (2)C9—C8—C12—O4−171.2 (2)
C11—O2—C10—C911.6 (4)C7—C8—C12—O47.8 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WK2098).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • Knesl, P., Roeseling, D. & Jordis, U. (2006). Molecules, 11, 286–297. [PubMed]
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography