PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o287.
Published online 2009 January 10. doi:  10.1107/S1600536809000282
PMCID: PMC2968178

8-Phenyl-10-oxa-8-aza­tricyclo­[4.3.0.12,5]decane-7,9-dione

Abstract

The reaction of aniline with norcantharidin produced the imide title compound, C14H13NO3, which shows no significant hydrogen bonds in the crystal structure. The dihedral angle between the phenyl and pyrrolidine rings is 48.48 (6)°.

Related literature

For the use of norcantharidin in synthesis see: Hill et al. (2007 [triangle]). For background, see: Wang (1989 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o287-scheme1.jpg

Experimental

Crystal data

  • C14H13NO3
  • M r = 243.25
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o287-efi1.jpg
  • a = 9.5914 (4) Å
  • b = 8.4345 (3) Å
  • c = 14.4101 (6) Å
  • β = 93.468 (3)°
  • V = 1163.62 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 296 (2) K
  • 0.32 × 0.25 × 0.04 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.971, T max = 0.996
  • 18085 measured reflections
  • 2699 independent reflections
  • 1898 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041
  • wR(F 2) = 0.177
  • S = 0.61
  • 2699 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000282/at2701sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000282/at2701Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

supplementary crystallographic information

Comment

Norcantharidin are a variety of pharmacologically important compounds such as protein kinase inhibitors and antitumor properties (Wang, 1989). We have designed, synthesized and crystallized several norcantharidin derivatives to study their anticancer properties. In order to study on the relationship between the activity of norcantharidin and the importance of aromatic ring linked to the carboxyl, the norcantharidin derivative was synthesized and its crystal structure is reported here.

X-ray crystallography confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. In the compound, the dihedral angle between the mean planes of pyrrolidine (C7/C8/C13/C14/N1) rings and the phenyl (C1—C6) is 48.48 (6)°. It exhibits no unusual crystal packing features, and each molecule acts as a donor and acceptor for one C10—H10B···O2 weak intermolecular hydrogen bonds.

Experimental

The title compound was synthesized by the condensation of norcantharidin (1 mmol) with aniline (1 mmol) in DMF (10 mL). After refluxing for 3 h, the reaction mixture was left to stand for two weeks, colourless crystals were isolated.

Refinement

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.93 - 0.98 Å, Uiso(H) = 1.2Ueq(C)].

Figures

Fig. 1.
A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.

Crystal data

C14H13NO3F(000) = 512
Mr = 243.25Dx = 1.389 Mg m3Dm = 1.389 Mg m3Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3324 reflections
a = 9.5914 (4) Åθ = 2.1–27.7°
b = 8.4345 (3) ŵ = 0.10 mm1
c = 14.4101 (6) ÅT = 296 K
β = 93.468 (3)°Sheet, colourless
V = 1163.62 (8) Å30.32 × 0.25 × 0.04 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer2699 independent reflections
Radiation source: fine-focus sealed tube1898 reflections with I > 2σ(I)
graphiteRint = 0.041
[var phi] and ω scansθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.971, Tmax = 0.996k = −11→10
18085 measured reflectionsl = −18→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.61w = 1/[σ2(Fo2) + (0.1908P)2 + 0.6671P] where P = (Fo2 + 2Fc2)/3
2699 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.10268 (15)0.22038 (16)0.69370 (9)0.0418 (4)
O1−0.04620 (15)0.1156 (2)0.79702 (10)0.0655 (4)
O20.19084 (14)0.33610 (17)0.56481 (9)0.0579 (4)
O3−0.13027 (14)0.06451 (14)0.54810 (10)0.0526 (4)
C10.32246 (19)0.0814 (2)0.68510 (13)0.0513 (4)
H1A0.30260.06650.62170.062*
C20.4439 (2)0.0209 (3)0.72752 (17)0.0620 (5)
H2A0.5055−0.03580.69270.074*
C30.4743 (2)0.0442 (3)0.82150 (17)0.0646 (6)
H3A0.55620.00340.84990.078*
C40.3832 (2)0.1278 (2)0.87295 (15)0.0599 (5)
H4A0.40420.14350.93610.072*
C50.2603 (2)0.1891 (2)0.83178 (13)0.0493 (4)
H5A0.19890.24570.86680.059*
C60.23040 (18)0.16445 (19)0.73715 (12)0.0421 (4)
C70.09220 (19)0.29901 (19)0.60787 (11)0.0432 (4)
C8−0.05956 (18)0.32348 (19)0.57997 (11)0.0432 (4)
H8A−0.08200.43490.56680.052*
C9−0.1114 (2)0.2122 (2)0.50018 (13)0.0502 (4)
H9A−0.04850.20540.44920.060*
C10−0.2605 (2)0.2614 (3)0.46982 (14)0.0592 (5)
H10A−0.29060.21480.41040.071*
H10B−0.26960.37580.46590.071*
C11−0.3429 (2)0.1933 (2)0.54908 (16)0.0585 (5)
H11A−0.39310.27560.58020.070*
H11B−0.40820.11200.52670.070*
C12−0.22552 (19)0.1238 (2)0.61262 (14)0.0488 (4)
H12A−0.25700.04320.65560.059*
C13−0.13944 (18)0.25713 (19)0.66061 (11)0.0430 (4)
H13A−0.19730.33690.68940.052*
C14−0.02839 (18)0.1892 (2)0.72702 (12)0.0449 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0422 (8)0.0437 (7)0.0400 (7)0.0010 (6)0.0060 (6)0.0082 (6)
O10.0549 (8)0.0882 (11)0.0546 (8)0.0025 (7)0.0131 (6)0.0281 (7)
O20.0542 (8)0.0651 (8)0.0555 (8)−0.0097 (6)0.0127 (6)0.0158 (6)
O30.0538 (7)0.0369 (6)0.0678 (8)0.0025 (5)0.0099 (6)−0.0059 (5)
C10.0465 (10)0.0543 (10)0.0534 (10)−0.0008 (8)0.0072 (8)−0.0011 (8)
C20.0440 (10)0.0628 (12)0.0799 (14)0.0028 (9)0.0097 (9)0.0026 (10)
C30.0417 (10)0.0654 (13)0.0851 (15)−0.0065 (9)−0.0098 (10)0.0115 (11)
C40.0588 (12)0.0611 (12)0.0580 (11)−0.0136 (9)−0.0121 (9)0.0061 (9)
C50.0533 (10)0.0465 (9)0.0481 (9)−0.0053 (8)0.0025 (8)0.0012 (7)
C60.0414 (8)0.0397 (8)0.0456 (9)−0.0038 (6)0.0042 (7)0.0050 (7)
C70.0486 (9)0.0398 (8)0.0415 (8)−0.0053 (7)0.0059 (7)0.0044 (6)
C80.0490 (9)0.0359 (8)0.0444 (9)−0.0014 (7)0.0015 (7)0.0053 (6)
C90.0568 (11)0.0490 (9)0.0450 (9)−0.0032 (8)0.0053 (8)−0.0019 (7)
C100.0640 (13)0.0534 (10)0.0579 (11)−0.0032 (9)−0.0139 (9)−0.0036 (9)
C110.0462 (10)0.0540 (11)0.0741 (13)0.0006 (8)−0.0060 (9)−0.0081 (9)
C120.0434 (9)0.0398 (8)0.0639 (11)−0.0005 (7)0.0090 (8)0.0043 (8)
C130.0441 (9)0.0396 (8)0.0459 (9)0.0050 (7)0.0082 (7)0.0018 (7)
C140.0434 (9)0.0472 (9)0.0450 (9)0.0024 (7)0.0100 (7)0.0044 (7)

Geometric parameters (Å, °)

N1—C141.398 (2)C5—H5A0.9300
N1—C71.402 (2)C7—C81.501 (2)
N1—C61.422 (2)C8—C131.536 (2)
O1—C141.205 (2)C8—C91.543 (2)
O2—C71.204 (2)C8—H8A0.9800
O3—C121.433 (2)C9—C101.528 (3)
O3—C91.441 (2)C9—H9A0.9800
C1—C21.380 (3)C10—C111.539 (3)
C1—C61.383 (2)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C31.382 (3)C11—C121.525 (3)
C2—H2A0.9300C11—H11A0.9700
C3—C41.374 (3)C11—H11B0.9700
C3—H3A0.9300C12—C131.535 (2)
C4—C51.387 (3)C12—H12A0.9800
C4—H4A0.9300C13—C141.502 (2)
C5—C61.392 (3)C13—H13A0.9800
C14—N1—C7111.99 (14)O3—C9—C8102.29 (14)
C14—N1—C6123.71 (14)C10—C9—C8107.58 (15)
C7—N1—C6124.01 (14)O3—C9—H9A114.2
C12—O3—C996.47 (12)C10—C9—H9A114.2
C2—C1—C6119.77 (18)C8—C9—H9A114.2
C2—C1—H1A120.1C9—C10—C11101.54 (15)
C6—C1—H1A120.1C9—C10—H10A111.5
C1—C2—C3120.2 (2)C11—C10—H10A111.5
C1—C2—H2A119.9C9—C10—H10B111.5
C3—C2—H2A119.9C11—C10—H10B111.5
C4—C3—C2119.91 (19)H10A—C10—H10B109.3
C4—C3—H3A120.0C12—C11—C10101.26 (16)
C2—C3—H3A120.0C12—C11—H11A111.5
C3—C4—C5120.8 (2)C10—C11—H11A111.5
C3—C4—H4A119.6C12—C11—H11B111.5
C5—C4—H4A119.6C10—C11—H11B111.5
C4—C5—C6118.85 (18)H11A—C11—H11B109.3
C4—C5—H5A120.6O3—C12—C11102.78 (16)
C6—C5—H5A120.6O3—C12—C13101.63 (13)
C1—C6—C5120.45 (17)C11—C12—C13110.30 (14)
C1—C6—N1119.36 (16)O3—C12—H12A113.7
C5—C6—N1120.16 (16)C11—C12—H12A113.7
O2—C7—N1124.14 (17)C13—C12—H12A113.7
O2—C7—C8127.30 (15)C14—C13—C12110.43 (14)
N1—C7—C8108.55 (14)C14—C13—C8104.73 (14)
C7—C8—C13105.51 (13)C12—C13—C8101.86 (13)
C7—C8—C9112.30 (14)C14—C13—H13A113.0
C13—C8—C9100.91 (14)C12—C13—H13A113.0
C7—C8—H8A112.5C8—C13—H13A113.0
C13—C8—H8A112.5O1—C14—N1124.09 (17)
C9—C8—H8A112.5O1—C14—C13126.79 (16)
O3—C9—C10103.26 (15)N1—C14—C13109.10 (14)
C6—C1—C2—C3−0.6 (3)C13—C8—C9—C1074.97 (17)
C1—C2—C3—C40.1 (3)O3—C9—C10—C1131.94 (17)
C2—C3—C4—C50.2 (3)C8—C9—C10—C11−75.77 (17)
C3—C4—C5—C60.0 (3)C9—C10—C11—C122.39 (18)
C2—C1—C6—C50.8 (3)C9—O3—C12—C1156.48 (16)
C2—C1—C6—N1−177.25 (17)C9—O3—C12—C13−57.71 (15)
C4—C5—C6—C1−0.6 (3)C10—C11—C12—O3−36.30 (17)
C4—C5—C6—N1177.52 (16)C10—C11—C12—C1371.41 (18)
C14—N1—C6—C1126.96 (18)O3—C12—C13—C14−74.48 (16)
C7—N1—C6—C1−46.3 (2)C11—C12—C13—C14177.05 (15)
C14—N1—C6—C5−51.1 (2)O3—C12—C13—C836.33 (16)
C7—N1—C6—C5135.62 (17)C11—C12—C13—C8−72.14 (17)
C14—N1—C7—O2−178.77 (17)C7—C8—C13—C14−3.54 (17)
C6—N1—C7—O2−4.8 (3)C9—C8—C13—C14113.50 (15)
C14—N1—C7—C8−0.10 (19)C7—C8—C13—C12−118.62 (14)
C6—N1—C7—C8173.85 (14)C9—C8—C13—C12−1.58 (16)
O2—C7—C8—C13−179.03 (18)C7—N1—C14—O1176.01 (17)
N1—C7—C8—C132.35 (18)C6—N1—C14—O12.0 (3)
O2—C7—C8—C971.9 (2)C7—N1—C14—C13−2.3 (2)
N1—C7—C8—C9−106.67 (16)C6—N1—C14—C13−176.26 (14)
C12—O3—C9—C10−54.79 (16)C12—C13—C14—O1−65.7 (2)
C12—O3—C9—C856.86 (16)C8—C13—C14—O1−174.64 (18)
C7—C8—C9—O378.51 (17)C12—C13—C14—N1112.55 (16)
C13—C8—C9—O3−33.41 (16)C8—C13—C14—N13.61 (18)
C7—C8—C9—C10−173.12 (14)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.593.502 (3)156

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2701).

References

  • Bruker (2004). SAINT and APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hill, T. A., Stewart, S. G., Ackland, S. P., Gilbert, J., Sauer, B., Sakoff, J. A. & McCluskey, A. (2007). Bioorg. Med. Chem 15, 6126–6134. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, G.-S. (1989). J. Ethnopharmacol.26, 147–162. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography