PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o246–o247.
Published online 2009 January 8. doi:  10.1107/S1600536809000038
PMCID: PMC2968177

2-Methoxy­benzaldehyde 2,4-dinitro­phenyl­hydrazone

Abstract

In the title compound, C14H12N4O5, an intra­molecular N—H(...)O hydrogen bond generates an S(6) ring motif. The dihedral angle between the two benzene rings is 3.91 (3)°, which shows the mol­ecule is almost planar. The para-nitro group is twisted from the benzene ring to which it is attached, making a dihedral angle of 8.50 (9)°. In the crystal structure, mol­ecules are linked together by inter­molecular C—H(...)O and inter­molecular three-centred O(...)O [2.8646 (12)–2.9213 (11) Å] and O(...)N [3.0518 (11) Å] inter­actions. The crystal structure is further stabilized by inter­molecular π–π inter­actions [centroid-to-centroid distances 3.5708 (6)–3.9728 (12) Å].

Related literature

For general background, see: Lamberton et al. (1974 [triangle]); Zegota (1999 [triangle]); Cordis et al. (1998 [triangle]); Zlotorzynska & Lai (1999 [triangle]); Niknam et al. (2005 [triangle]); Guillaumont & Nakamura (2000 [triangle]); Raj & Kurup (2006 [triangle]). For biological applications, see: Okabe et al. (1993 [triangle]). Standard bond-length data are given in: Allen et al. (1987 [triangle]). For details of the classification of ring motifs, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o246-scheme1.jpg

Experimental

Crystal data

  • C14H12N4O5
  • M r = 316.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o246-efi1.jpg
  • a = 7.0315 (1) Å
  • b = 7.6205 (2) Å
  • c = 14.1896 (4) Å
  • α = 98.048 (1)°
  • β = 97.064 (1)°
  • γ = 109.467 (1)°
  • V = 697.99 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 100.0 (1) K
  • 0.57 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.936, T max = 0.988
  • 14423 measured reflections
  • 5023 independent reflections
  • 4442 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045
  • wR(F 2) = 0.126
  • S = 1.06
  • 5023 reflections
  • 213 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005 [triangle]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000038/pk2139sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000038/pk2139Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks the Universiti Sains Malaysia for awarding a postdoctoral research fellowship. HK thanks PNU for financial support of this work.

supplementary crystallographic information

Comment

2,4-Dinitrophenylhydrazones play a more important role as stabilizers for the detection, characterization and protection of carbonyl groups than phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj & Kurup, 2006). In addition, some phenylhydrazone derivatives have been shown to be potentially DNA-damaging and mutagenic agents (Okabe et al., 1993). For these reasons, the structure of the title compound is reported here.

Bond lengths in the title compound (Fig. 1) are normal (Allen et al., 1987). An intramolecular N—H···O hydrogen bond generates an S(6) ring motif (Bernstein et al., 1995). The molecule is nearly planar, with a maximum deviation from the mean plane of -0.3464 (8) Å for atom O4 which is due to the intermolecular three-centered O···O and O···N interactions. The dihedral angle between the two benzene rings is 4.63 (1)°. Interesting features of the crystal structure include intermolecular three-centered O2···O2i [2.8646 (12) Å; (i) 1 - x, 1 - y, -z], O4···O4iv [2.8646 (12) Å; (iv) code: -x, -y, -1 - z], and O4···N4ii [3.0518 (11) Å] interactions. The molecules are also linked by C—H···O hydrogen bonds (Table 1), and by intermolecular π–π interactions giving centroid–centroid distances for rings C1–C6 (Cg1) and C8–C13 (Cg2) of 3.5708 (6) Å and 3.9728 (12) Å [Cg1···Cg2v; (v) -x, -y, -z and Cg1···Cg2vi; (vi) 1 - x, -y, -z] (interplanar spacings are 3.3080 (4) and 3.3691 (4) Å respectively (Fig. 2).

Experimental

The title compound was synthesized based on the reported procedure (Okabe et al. 1993) except that 3-methoxybenzaldehyde (1 mmol, 136 mg) was used instead. Single crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in ethanol.

Refinement

N-bound H atom was located from the difference Fourier map and refined freely. The remaining H atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl group.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bond is shown as a dashed line.
Fig. 2.
The crystal packing of the title compound, viewed down the a axis, showing the molecules are linked through intermolecular C—H···O and O···O interactions and also are stacked along the a axis. Intermolecular ...

Crystal data

C14H12N4O5Z = 2
Mr = 316.28F(000) = 328
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0315 (1) ÅCell parameters from 6651 reflections
b = 7.6205 (2) Åθ = 2.9–40.3°
c = 14.1896 (4) ŵ = 0.12 mm1
α = 98.048 (1)°T = 100 K
β = 97.064 (1)°Block, orange
γ = 109.467 (1)°0.57 × 0.23 × 0.10 mm
V = 697.99 (3) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer5023 independent reflections
Radiation source: fine-focus sealed tube4442 reflections with I > 2σ(I)
graphiteRint = 0.021
[var phi] and ω scansθmax = 32.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −10→10
Tmin = 0.936, Tmax = 0.988k = −11→11
14423 measured reflectionsl = −21→21

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.06w = 1/[σ2(Fo2) + (0.0683P)2 + 0.1626P] where P = (Fo2 + 2Fc2)/3
5023 reflections(Δ/σ)max < 0.001
213 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.52355 (11)0.19077 (9)0.30740 (5)0.01789 (14)
O20.31793 (12)0.47602 (10)−0.06604 (5)0.02132 (15)
O30.20422 (12)0.51054 (10)−0.20851 (5)0.02350 (16)
O4−0.18137 (11)−0.00408 (11)−0.45869 (5)0.02104 (15)
O5−0.19171 (12)−0.28928 (10)−0.44929 (5)0.02410 (16)
N10.27092 (11)0.00256 (11)0.02604 (5)0.01410 (14)
N20.26656 (12)0.13732 (11)−0.02830 (5)0.01416 (14)
N30.22761 (12)0.40930 (10)−0.15138 (6)0.01487 (15)
N4−0.14093 (12)−0.11921 (11)−0.41450 (5)0.01611 (15)
C10.46732 (13)0.00043 (12)0.27560 (6)0.01377 (15)
C20.48758 (14)−0.12628 (13)0.33510 (6)0.01710 (17)
H2A0.5476−0.08150.40010.021*
C30.41767 (15)−0.31935 (14)0.29676 (7)0.01947 (18)
H3A0.4306−0.40350.33650.023*
C40.32856 (14)−0.38821 (13)0.19954 (7)0.01804 (17)
H4A0.2814−0.51770.17450.022*
C50.31052 (13)−0.26234 (12)0.14015 (6)0.01530 (16)
H5A0.2514−0.30850.07510.018*
C60.38009 (12)−0.06701 (12)0.17671 (6)0.01284 (15)
C70.36703 (13)0.06671 (12)0.11394 (6)0.01371 (15)
H7A0.42760.19670.13730.016*
C80.17242 (12)0.07996 (12)−0.12228 (6)0.01178 (15)
C90.09189 (13)−0.11672 (12)−0.16426 (6)0.01378 (15)
H9A0.1056−0.2038−0.12660.017*
C10−0.00529 (13)−0.18102 (12)−0.25882 (6)0.01405 (15)
H10A−0.0547−0.3101−0.28520.017*
C11−0.02975 (12)−0.05112 (12)−0.31553 (6)0.01291 (15)
C120.04681 (12)0.14065 (12)−0.27956 (6)0.01311 (15)
H12A0.03070.2253−0.31840.016*
C130.14893 (12)0.20609 (11)−0.18400 (6)0.01222 (15)
C140.64623 (15)0.27271 (14)0.40200 (7)0.01993 (18)
H14A0.68760.40840.41200.030*
H14B0.76570.23770.40740.030*
H14C0.56750.22690.45000.030*
H1N20.329 (2)0.256 (2)−0.0027 (11)0.035 (4)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0227 (3)0.0151 (3)0.0117 (3)0.0049 (2)−0.0022 (2)−0.0014 (2)
O20.0294 (4)0.0137 (3)0.0151 (3)0.0053 (3)−0.0036 (3)−0.0028 (2)
O30.0317 (4)0.0130 (3)0.0239 (4)0.0077 (3)−0.0032 (3)0.0055 (3)
O40.0218 (3)0.0268 (4)0.0147 (3)0.0103 (3)−0.0016 (2)0.0048 (3)
O50.0274 (4)0.0189 (3)0.0185 (3)0.0055 (3)−0.0040 (3)−0.0063 (3)
N10.0153 (3)0.0149 (3)0.0115 (3)0.0049 (2)0.0015 (2)0.0030 (2)
N20.0173 (3)0.0123 (3)0.0109 (3)0.0042 (3)−0.0004 (2)0.0014 (2)
N30.0162 (3)0.0115 (3)0.0158 (3)0.0051 (2)0.0007 (3)0.0007 (2)
N40.0144 (3)0.0190 (3)0.0126 (3)0.0052 (3)−0.0001 (2)−0.0002 (3)
C10.0130 (3)0.0156 (4)0.0116 (3)0.0044 (3)0.0017 (3)0.0018 (3)
C20.0164 (4)0.0212 (4)0.0130 (4)0.0057 (3)0.0011 (3)0.0049 (3)
C30.0199 (4)0.0207 (4)0.0195 (4)0.0072 (3)0.0041 (3)0.0091 (3)
C40.0191 (4)0.0142 (4)0.0199 (4)0.0042 (3)0.0047 (3)0.0040 (3)
C50.0151 (3)0.0150 (4)0.0136 (4)0.0032 (3)0.0024 (3)0.0014 (3)
C60.0123 (3)0.0145 (3)0.0108 (3)0.0040 (3)0.0017 (3)0.0018 (3)
C70.0145 (3)0.0138 (3)0.0118 (3)0.0042 (3)0.0019 (3)0.0016 (3)
C80.0120 (3)0.0124 (3)0.0103 (3)0.0042 (3)0.0013 (3)0.0010 (3)
C90.0160 (3)0.0113 (3)0.0128 (4)0.0039 (3)0.0015 (3)0.0020 (3)
C100.0151 (3)0.0111 (3)0.0136 (4)0.0030 (3)0.0014 (3)0.0001 (3)
C110.0119 (3)0.0144 (3)0.0103 (3)0.0034 (3)0.0000 (3)0.0007 (3)
C120.0128 (3)0.0139 (3)0.0124 (3)0.0051 (3)0.0008 (3)0.0022 (3)
C130.0128 (3)0.0100 (3)0.0129 (3)0.0039 (3)0.0007 (3)0.0007 (3)
C140.0188 (4)0.0225 (4)0.0131 (4)0.0048 (3)−0.0019 (3)−0.0032 (3)

Geometric parameters (Å, °)

O1—C11.3618 (11)C4—C51.3883 (13)
O1—C141.4344 (11)C4—H4A0.9300
O2—N31.2456 (10)C5—C61.4001 (12)
O3—N31.2274 (10)C5—H5A0.9300
O4—N41.2329 (10)C6—C71.4617 (12)
O5—N41.2328 (10)C7—H7A0.9300
N1—C71.2858 (11)C8—C91.4224 (11)
N1—N21.3736 (10)C8—C131.4227 (11)
N2—C81.3545 (10)C9—C101.3692 (11)
N2—H1N20.864 (16)C9—H9A0.9300
N3—C131.4435 (11)C10—C111.3998 (12)
N4—C111.4520 (11)C10—H10A0.9300
C1—C21.3985 (12)C11—C121.3730 (12)
C1—C61.4092 (11)C12—C131.3912 (11)
C2—C31.3894 (14)C12—H12A0.9300
C2—H2A0.9300C14—H14A0.9600
C3—C41.3916 (13)C14—H14B0.9600
C3—H3A0.9300C14—H14C0.9600
C1—O1—C14118.36 (7)C1—C6—C7119.95 (7)
C7—N1—N2115.65 (7)N1—C7—C6119.25 (8)
C8—N2—N1118.87 (7)N1—C7—H7A120.4
C8—N2—H1N2121.6 (10)C6—C7—H7A120.4
N1—N2—H1N2119.4 (10)N2—C8—C9119.67 (7)
O3—N3—O2122.20 (7)N2—C8—C13123.82 (7)
O3—N3—C13119.09 (7)C9—C8—C13116.51 (7)
O2—N3—C13118.71 (7)C10—C9—C8121.61 (8)
O5—N4—O4123.66 (8)C10—C9—H9A119.2
O5—N4—C11118.19 (7)C8—C9—H9A119.2
O4—N4—C11118.15 (7)C9—C10—C11119.52 (8)
O1—C1—C2123.98 (8)C9—C10—H10A120.2
O1—C1—C6115.86 (7)C11—C10—H10A120.2
C2—C1—C6120.14 (8)C12—C11—C10121.62 (8)
C3—C2—C1119.74 (8)C12—C11—N4118.64 (7)
C3—C2—H2A120.1C10—C11—N4119.74 (7)
C1—C2—H2A120.1C11—C12—C13118.80 (8)
C2—C3—C4120.73 (8)C11—C12—H12A120.6
C2—C3—H3A119.6C13—C12—H12A120.6
C4—C3—H3A119.6C12—C13—C8121.90 (7)
C5—C4—C3119.58 (8)C12—C13—N3115.84 (7)
C5—C4—H4A120.2C8—C13—N3122.26 (7)
C3—C4—H4A120.2O1—C14—H14A109.5
C4—C5—C6120.96 (8)O1—C14—H14B109.5
C4—C5—H5A119.5H14A—C14—H14B109.5
C6—C5—H5A119.5O1—C14—H14C109.5
C5—C6—C1118.84 (8)H14A—C14—H14C109.5
C5—C6—C7121.21 (7)H14B—C14—H14C109.5
C7—N1—N2—C8178.35 (7)C13—C8—C9—C10−0.77 (12)
C14—O1—C1—C212.61 (13)C8—C9—C10—C11−1.15 (13)
C14—O1—C1—C6−168.81 (8)C9—C10—C11—C121.96 (13)
O1—C1—C2—C3177.25 (8)C9—C10—C11—N4−177.18 (8)
C6—C1—C2—C3−1.27 (13)O5—N4—C11—C12173.05 (8)
C1—C2—C3—C40.36 (14)O4—N4—C11—C12−7.77 (12)
C2—C3—C4—C50.38 (14)O5—N4—C11—C10−7.78 (12)
C3—C4—C5—C6−0.21 (14)O4—N4—C11—C10171.39 (8)
C4—C5—C6—C1−0.69 (13)C10—C11—C12—C13−0.75 (13)
C4—C5—C6—C7178.17 (8)N4—C11—C12—C13178.40 (7)
O1—C1—C6—C5−177.21 (7)C11—C12—C13—C8−1.28 (13)
C2—C1—C6—C51.43 (13)C11—C12—C13—N3179.24 (7)
O1—C1—C6—C73.91 (12)N2—C8—C13—C12−178.46 (8)
C2—C1—C6—C7−177.45 (8)C9—C8—C13—C122.01 (12)
N2—N1—C7—C6−179.67 (7)N2—C8—C13—N30.98 (13)
C5—C6—C7—N17.29 (13)C9—C8—C13—N3−178.55 (7)
C1—C6—C7—N1−173.86 (8)O3—N3—C13—C12−1.30 (12)
N1—N2—C8—C9−3.93 (12)O2—N3—C13—C12178.99 (8)
N1—N2—C8—C13176.55 (8)O3—N3—C13—C8179.23 (8)
N2—C8—C9—C10179.68 (8)O2—N3—C13—C8−0.48 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H1N2···O20.864 (15)2.029 (15)2.6253 (11)125.4 (13)
N2—H1N2···O2i0.864 (15)2.599 (15)3.3475 (11)145.6 (13)
C2—H2A···O4ii0.932.443.3113 (12)155
C5—H5A···O2iii0.932.603.3184 (11)135

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y, z+1; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2139).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cordis, G. A., Das, D. K. & Riedel, W. (1998). J. Chromatogr. A, 798, 117–123. [PubMed]
  • Guillaumont, D. & Nakamura, S. (2000). Dyes Pigm.46, 85–92.
  • Lamberton, J. A., Nelson, E. R. & Triffett, C. K. (1974). Aust. J. Chem.27, 1521–1529.
  • Niknam, K., Kiasat, A. R. & Karimi, S. (2005). Synth. Commun.35, 2231–2236.
  • Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.
  • Raj, B. N. B. & Kurup, M. R. P. (2006). Spectrochim. Acta A, 71, 1251–1260.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Zegota, H. (1999). J. Chromatogr. A, 863, 227–233. [PubMed]
  • Zlotorzynska, E. D. & Lai, E. P. C. (1999). J. Chromatogr. A, 853, 487–796. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography