PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o398.
Published online 2009 January 28. doi:  10.1107/S160053680900261X
PMCID: PMC2968168

rac-(4R,17S,18R,26R)-Ethyl 4′-methoxy­carbonyl-5′′-(4-methoxy­phen­yl)-1′-methyl-2,3′′-dioxo-2′′,3′′-dihydro­indoline-3-spiro-2′-pyrrolidine-3′-spiro-2′′-thia­zolo[3,2-a]pyrimidine-6′′-carboxyl­ate

Abstract

In the title compound, C30H30N4O7S, the two spiro junctions link a planar 2-oxindole ring [with a mean deviation from the plane of 0.0319 (3) Å, a pyrrolidine ring in an envelope conformation and a thia­zolo[3,2-a]pyrimidine system. Two mol­ecules are connected into a dimer by two N—H(...)O hydrogen bonds, forming an R 2 2(8) graph-set motif. The title compound has four stereogenic centers and appears as a racemic mixture of one single diastereoisomer (RSRR/SRSS).

Related literature

For related literature on spiro compounds, see: Caramella & Grunanger (1984 [triangle]); James et al. (1991 [triangle]); Kobayashi et al. (1991 [triangle]). For structural discussion, see: Cremer & Pople (1975 [triangle]); Etter (1990 [triangle]); Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o398-scheme1.jpg

Experimental

Crystal data

  • C30H30N4O7S
  • M r = 590.64
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o398-efi1.jpg
  • a = 9.944 (2) Å
  • b = 11.389 (2) Å
  • c = 13.417 (3) Å
  • α = 98.06 (3)°
  • β = 107.36 (3)°
  • γ = 101.00 (3)°
  • V = 1391.8 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.17 mm−1
  • T = 113 (2) K
  • 0.20 × 0.18 × 0.08 mm

Data collection

  • Rigaku Saturn diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2001 [triangle]) T min = 0.956, T max = 0.977
  • 10220 measured reflections
  • 4881 independent reflections
  • 3700 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.098
  • S = 1.06
  • 4881 reflections
  • 384 parameters
  • H-atom parameters constrained
  • Δρmax = 0.28 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: CrystalClear (Rigaku, 2001 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680900261X/dn2427sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680900261X/dn2427Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Spiro-compounds represent an important class of naturally occurring substances, which in many cases exhibit important biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are widely used for the construction of spiro-compounds (Caramella & Grunanger,1984). In this paper, the structure of the title compound (I) is reported. The compound was synthesized by the intermolecular [3 + 2] cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and (2Z)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate.

In the title compound, C30H30N4O7S, the two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an half-chair conformation and a thiazolo[3,2-a]pyrimidine ring (Fig. 1). The pyrrolidine ring (N4/C27/C26/C17/C18) has a half-chair conformation with puckering parameters, Q(2)= 0.4780 (18)Å and [var phi](2)= 47.9° (Cremer & Pople, 1975). The 2-oxindole ring (N3/C25/C18/C19/C20/C21/C22/C23/C24) is nearly planar with the mean deviation from this plane being 0.032 (3)%A.

Two molecules are connected into a dimer by two N—H···O hydrogen bonds forming a ring with a R22(8) graph set motif (Etter, 1990; Bernstein et al., 1994) (Table 1, Fig. 2).

The title compound has 4 stereogenic centers and then appears as a racemic mixture of one single diastereoisomer (RSRR/SRSS).

Experimental

A mixture of (2Z)-ethyl 2-((methoxycarbonyl)methylene)-3,5-dihydro-5-(4-methoxyphenyl)- 7-methyl-3-oxo-2H-thiazolo[3,2-a]pyrimidine-6-carboxylate(1 mmol), isatin(1 mmol) and sarcosine(1 mmol) were refluxed in methanol (60 ml) until the disappearence of the starting material as evidenced by the TLC. After the reaction was over, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethylacetate=5:1) to give the title compound (I).

m.p.497 K; 1H-NMR (δ, p.p.m.): 1.01–1.02(m, 3H), 2.06 (s, 3H), 2.35(s, 3H), 3.05(s, 3H), 3.39–3.40 (m, 1H), 3.60–3.63 (m, 1H), 3.90–3.92(m, 2H), 4.81–4.85(m, 1H), 5.76(s, 1H), 6.74–6.76(m, 1H), 6.96–6.99(m, 1H), 7.20–7.26(m, 5H), 7.58–7.60(m, 1H), 7.62 (bs, 1H, –NH);

20 mg of (I) was dissolved in 15 ml dioxane-ethyl acetate mixed solvent; the solution was kept at room temperature for 15 d by natural evaporation to give colorless single crystals of (I), suitable for X-Ray analysis.

Refinement

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.96Å (methyl), 0.97Å (methylene), 0.98Å (methine) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N) or Uiso(H) = 1.5Ueq(methine).

Figures

Fig. 1.
The molecular structure of (I) with the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
Fig. 2.
Partial packing view showing the formation of dimer through N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry code: (i) -x, 1-y, -z]

Crystal data

C30H30N4O7SZ = 2
Mr = 590.64F(000) = 620
Triclinic, P1Dx = 1.409 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.944 (2) ÅCell parameters from 4258 reflections
b = 11.389 (2) Åθ = 1.8–27.9°
c = 13.417 (3) ŵ = 0.17 mm1
α = 98.06 (3)°T = 113 K
β = 107.36 (3)°Block, colourless
γ = 101.00 (3)°0.20 × 0.18 × 0.08 mm
V = 1391.8 (6) Å3

Data collection

Rigaku Saturn diffractometer4881 independent reflections
Radiation source: rotating anode3700 reflections with I > 2σ(I)
confocalRint = 0.029
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2001)h = −11→11
Tmin = 0.956, Tmax = 0.977k = −13→10
10220 measured reflectionsl = −15→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0589P)2] where P = (Fo2 + 2Fc2)/3
4881 reflections(Δ/σ)max < 0.001
384 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.04156 (5)0.35302 (4)0.42322 (3)0.02231 (13)
O10.32486 (14)−0.13252 (12)0.32935 (11)0.0354 (3)
O20.26663 (13)−0.05624 (11)0.18117 (10)0.0281 (3)
O3−0.42217 (12)−0.30677 (11)0.05644 (10)0.0316 (3)
O4−0.02319 (12)0.24227 (10)0.12268 (9)0.0236 (3)
O5−0.11369 (12)0.48453 (10)0.08582 (8)0.0218 (3)
O6−0.27264 (14)0.17208 (12)0.27772 (13)0.0429 (4)
O7−0.39268 (13)0.31585 (11)0.30007 (10)0.0328 (3)
N10.16597 (15)0.16869 (13)0.46129 (11)0.0241 (3)
N20.07144 (14)0.18849 (12)0.28126 (10)0.0174 (3)
N30.13510 (14)0.52812 (12)0.12989 (11)0.0208 (3)
H30.14060.53090.06740.025*
N4−0.02410 (14)0.56993 (12)0.32782 (10)0.0182 (3)
C10.3131 (2)0.02959 (19)0.51724 (15)0.0344 (5)
H1A0.3593−0.02880.49130.052*
H1B0.2512−0.00830.55260.052*
H1C0.38580.09780.56670.052*
C20.22450 (18)0.07314 (16)0.42587 (14)0.0229 (4)
C30.20286 (17)0.03199 (15)0.32123 (14)0.0213 (4)
C40.09652 (17)0.07312 (14)0.23379 (13)0.0189 (4)
H40.14030.08860.17900.023*
C50.10029 (17)0.22161 (15)0.39038 (13)0.0199 (4)
C60.27164 (17)−0.06142 (16)0.28186 (15)0.0239 (4)
C70.3202 (2)−0.14574 (17)0.12533 (16)0.0364 (5)
H7A0.2439−0.22010.09130.044*
H7B0.4011−0.16600.17520.044*
C80.3682 (2)−0.09030 (19)0.04354 (17)0.0391 (5)
H8A0.2880−0.0685−0.00410.059*
H8B0.4014−0.14830.00370.059*
H8C0.4459−0.01840.07830.059*
C9−0.04382 (17)−0.02596 (14)0.18261 (13)0.0181 (4)
C10−0.07297 (18)−0.10076 (15)0.08378 (13)0.0212 (4)
H10−0.0079−0.08670.04680.025*
C11−0.19697 (18)−0.19597 (15)0.03911 (14)0.0250 (4)
H11−0.2141−0.2460−0.02670.030*
C12−0.29533 (17)−0.21597 (15)0.09342 (14)0.0232 (4)
C13−0.26702 (18)−0.14307 (16)0.19270 (14)0.0248 (4)
H13−0.3321−0.15740.22970.030*
C14−0.14238 (17)−0.04920 (15)0.23686 (13)0.0216 (4)
H14−0.1240−0.00090.30370.026*
C15−0.4605 (2)−0.3746 (2)−0.04918 (17)0.0525 (6)
H15A−0.4643−0.3196−0.09750.079*
H15B−0.5540−0.4305−0.06850.079*
H15C−0.3891−0.4195−0.05310.079*
C160.00520 (17)0.26045 (14)0.21851 (13)0.0182 (4)
C17−0.02451 (17)0.36688 (15)0.28420 (12)0.0179 (4)
C180.04721 (17)0.49640 (14)0.27189 (12)0.0177 (4)
C190.21177 (17)0.53663 (14)0.31052 (13)0.0190 (4)
C200.31437 (18)0.56616 (16)0.41158 (14)0.0244 (4)
H200.28640.55860.47110.029*
C210.46058 (18)0.60752 (16)0.42303 (15)0.0275 (4)
H210.53040.62640.49070.033*
C220.50340 (18)0.62089 (16)0.33501 (15)0.0262 (4)
H220.60160.64800.34430.031*
C230.40141 (17)0.59426 (15)0.23323 (14)0.0227 (4)
H230.42910.60390.17390.027*
C240.25706 (17)0.55281 (14)0.22340 (13)0.0194 (4)
C250.00866 (18)0.49965 (14)0.14971 (13)0.0187 (4)
C26−0.18551 (17)0.37201 (15)0.25039 (13)0.0197 (4)
H26−0.22050.35850.17230.024*
C27−0.17881 (17)0.50704 (15)0.29251 (13)0.0208 (4)
H27A−0.23520.54090.23640.025*
H27B−0.21610.51450.35160.025*
C280.00420 (19)0.69933 (15)0.32462 (14)0.0244 (4)
H28A0.10710.73490.35240.037*
H28B−0.04240.74010.36720.037*
H28C−0.03340.70830.25220.037*
C29−0.28448 (18)0.27477 (16)0.27959 (14)0.0257 (4)
C30−0.5040 (2)0.22464 (19)0.31518 (18)0.0452 (6)
H30A−0.54140.15750.25450.068*
H30B−0.58130.26040.32250.068*
H30C−0.46280.19560.37850.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0323 (3)0.0206 (2)0.0145 (2)0.00589 (18)0.00909 (19)0.00318 (18)
O10.0359 (8)0.0347 (8)0.0425 (8)0.0188 (6)0.0128 (7)0.0170 (7)
O20.0311 (7)0.0284 (7)0.0330 (7)0.0159 (6)0.0164 (6)0.0083 (6)
O30.0246 (7)0.0246 (7)0.0345 (7)−0.0027 (5)0.0041 (6)−0.0046 (6)
O40.0335 (7)0.0232 (6)0.0143 (6)0.0093 (5)0.0074 (5)0.0024 (5)
O50.0213 (6)0.0286 (7)0.0150 (6)0.0065 (5)0.0048 (5)0.0057 (5)
O60.0429 (8)0.0239 (7)0.0705 (11)0.0051 (6)0.0322 (8)0.0122 (7)
O70.0267 (7)0.0302 (7)0.0435 (8)−0.0003 (6)0.0213 (7)0.0026 (6)
N10.0255 (8)0.0268 (8)0.0190 (7)0.0050 (6)0.0058 (7)0.0065 (7)
N20.0198 (7)0.0160 (7)0.0159 (7)0.0036 (6)0.0062 (6)0.0025 (6)
N30.0227 (8)0.0270 (8)0.0153 (7)0.0064 (6)0.0090 (6)0.0064 (6)
N40.0219 (7)0.0164 (7)0.0177 (7)0.0047 (6)0.0094 (6)0.0019 (6)
C10.0336 (11)0.0395 (11)0.0282 (10)0.0130 (9)0.0036 (9)0.0103 (9)
C20.0182 (9)0.0241 (9)0.0269 (9)0.0038 (7)0.0070 (8)0.0108 (8)
C30.0148 (8)0.0214 (9)0.0276 (9)0.0025 (7)0.0066 (8)0.0091 (8)
C40.0197 (9)0.0181 (8)0.0197 (8)0.0055 (7)0.0083 (7)0.0019 (7)
C50.0212 (9)0.0204 (9)0.0164 (8)0.0005 (7)0.0066 (7)0.0043 (7)
C60.0141 (9)0.0219 (9)0.0326 (10)−0.0006 (7)0.0061 (8)0.0065 (8)
C70.0389 (12)0.0299 (10)0.0495 (13)0.0199 (9)0.0216 (11)0.0070 (10)
C80.0419 (12)0.0425 (12)0.0411 (12)0.0189 (10)0.0223 (11)0.0054 (10)
C90.0190 (9)0.0166 (8)0.0194 (8)0.0070 (7)0.0053 (7)0.0045 (7)
C100.0240 (9)0.0220 (9)0.0203 (8)0.0079 (7)0.0092 (8)0.0053 (7)
C110.0307 (10)0.0217 (9)0.0188 (9)0.0069 (8)0.0049 (8)−0.0011 (8)
C120.0183 (9)0.0182 (9)0.0275 (9)0.0042 (7)0.0014 (8)0.0012 (8)
C130.0218 (9)0.0248 (9)0.0295 (10)0.0056 (7)0.0130 (8)0.0012 (8)
C140.0224 (9)0.0192 (9)0.0208 (9)0.0042 (7)0.0072 (8)−0.0020 (7)
C150.0482 (14)0.0483 (14)0.0340 (12)−0.0169 (11)0.0018 (11)−0.0114 (11)
C160.0169 (8)0.0167 (8)0.0190 (9)0.0003 (7)0.0063 (7)0.0020 (7)
C170.0217 (9)0.0179 (8)0.0125 (8)0.0025 (7)0.0057 (7)0.0016 (7)
C180.0218 (9)0.0172 (8)0.0138 (8)0.0043 (7)0.0063 (7)0.0025 (7)
C190.0215 (9)0.0155 (8)0.0205 (9)0.0056 (7)0.0074 (8)0.0034 (7)
C200.0283 (10)0.0243 (9)0.0200 (9)0.0068 (8)0.0069 (8)0.0053 (8)
C210.0210 (9)0.0296 (10)0.0254 (9)0.0060 (8)−0.0005 (8)0.0031 (8)
C220.0181 (9)0.0233 (9)0.0364 (10)0.0067 (7)0.0083 (8)0.0037 (8)
C230.0231 (9)0.0210 (9)0.0261 (9)0.0065 (7)0.0117 (8)0.0025 (8)
C240.0232 (9)0.0163 (8)0.0189 (8)0.0063 (7)0.0069 (7)0.0027 (7)
C250.0258 (10)0.0146 (8)0.0165 (8)0.0046 (7)0.0088 (8)0.0025 (7)
C260.0198 (9)0.0202 (9)0.0185 (8)0.0029 (7)0.0075 (7)0.0019 (7)
C270.0230 (9)0.0222 (9)0.0186 (8)0.0062 (7)0.0091 (8)0.0032 (7)
C280.0300 (10)0.0185 (9)0.0255 (9)0.0059 (7)0.0106 (8)0.0048 (8)
C290.0270 (10)0.0255 (10)0.0241 (9)0.0035 (8)0.0114 (8)0.0012 (8)
C300.0389 (12)0.0398 (12)0.0564 (14)−0.0091 (10)0.0317 (12)−0.0001 (11)

Geometric parameters (Å, °)

S1—C51.7542 (17)C9—C141.393 (2)
S1—C171.8239 (17)C10—C111.386 (2)
O1—C61.204 (2)C10—H100.9300
O2—C61.347 (2)C11—C121.388 (2)
O2—C71.4547 (19)C11—H110.9300
O3—C121.375 (2)C12—C131.386 (2)
O3—C151.417 (2)C13—C141.382 (2)
O4—C161.2092 (19)C13—H130.9300
O5—C251.225 (2)C14—H140.9300
O6—C291.195 (2)C15—H15A0.9600
O7—C291.336 (2)C15—H15B0.9600
O7—C301.449 (2)C15—H15C0.9600
N1—C51.279 (2)C16—C171.525 (2)
N1—C21.418 (2)C17—C261.543 (2)
N2—C161.372 (2)C17—C181.565 (2)
N2—C51.386 (2)C18—C191.516 (2)
N2—C41.4763 (19)C18—C251.576 (2)
N3—C251.351 (2)C19—C201.381 (2)
N3—C241.410 (2)C19—C241.395 (2)
N3—H30.8600C20—C211.394 (2)
N4—C281.456 (2)C20—H200.9300
N4—C181.4613 (19)C21—C221.387 (2)
N4—C271.468 (2)C21—H210.9300
C1—C21.489 (3)C22—C231.387 (2)
C1—H1A0.9600C22—H220.9300
C1—H1B0.9600C23—C241.383 (2)
C1—H1C0.9600C23—H230.9300
C2—C31.354 (2)C26—C291.511 (2)
C3—C61.488 (2)C26—C271.544 (2)
C3—C41.522 (2)C26—H260.9800
C4—C91.517 (2)C27—H27A0.9700
C4—H40.9800C27—H27B0.9700
C7—C81.490 (3)C28—H28A0.9600
C7—H7A0.9700C28—H28B0.9600
C7—H7B0.9700C28—H28C0.9600
C8—H8A0.9600C30—H30A0.9600
C8—H8B0.9600C30—H30B0.9600
C8—H8C0.9600C30—H30C0.9600
C9—C101.388 (2)
C5—S1—C1792.62 (8)O3—C15—H15B109.5
C6—O2—C7118.23 (14)H15A—C15—H15B109.5
C12—O3—C15116.59 (14)O3—C15—H15C109.5
C29—O7—C30115.34 (15)H15A—C15—H15C109.5
C5—N1—C2116.85 (14)H15B—C15—H15C109.5
C16—N2—C5117.35 (13)O4—C16—N2123.53 (14)
C16—N2—C4121.33 (13)O4—C16—C17124.42 (15)
C5—N2—C4120.99 (14)N2—C16—C17112.04 (13)
C25—N3—C24112.18 (13)C16—C17—C26114.29 (13)
C25—N3—H3123.9C16—C17—C18114.60 (12)
C24—N3—H3123.9C26—C17—C18100.14 (13)
C28—N4—C18116.07 (12)C16—C17—S1106.54 (11)
C28—N4—C27114.43 (13)C26—C17—S1110.98 (11)
C18—N4—C27107.91 (12)C18—C17—S1110.29 (11)
C2—C1—H1A109.5N4—C18—C19115.48 (13)
C2—C1—H1B109.5N4—C18—C1799.08 (11)
H1A—C1—H1B109.5C19—C18—C17117.85 (14)
C2—C1—H1C109.5N4—C18—C25113.92 (13)
H1A—C1—H1C109.5C19—C18—C25101.49 (12)
H1B—C1—H1C109.5C17—C18—C25109.54 (13)
C3—C2—N1122.34 (16)C20—C19—C24119.01 (15)
C3—C2—C1126.15 (16)C20—C19—C18131.99 (14)
N1—C2—C1111.49 (15)C24—C19—C18108.80 (14)
C2—C3—C6123.73 (17)C19—C20—C21118.98 (16)
C2—C3—C4121.49 (15)C19—C20—H20120.5
C6—C3—C4114.66 (14)C21—C20—H20120.5
N2—C4—C9111.87 (12)C22—C21—C20121.00 (17)
N2—C4—C3108.35 (13)C22—C21—H21119.5
C9—C4—C3110.37 (13)C20—C21—H21119.5
N2—C4—H4108.7C23—C22—C21120.73 (15)
C9—C4—H4108.7C23—C22—H22119.6
C3—C4—H4108.7C21—C22—H22119.6
N1—C5—N2126.15 (15)C24—C23—C22117.44 (15)
N1—C5—S1122.36 (13)C24—C23—H23121.3
N2—C5—S1111.45 (13)C22—C23—H23121.3
O1—C6—O2123.06 (16)C23—C24—C19122.81 (16)
O1—C6—C3127.42 (17)C23—C24—N3127.24 (15)
O2—C6—C3109.52 (15)C19—C24—N3109.84 (14)
O2—C7—C8107.49 (15)O5—C25—N3126.46 (15)
O2—C7—H7A110.2O5—C25—C18125.94 (13)
C8—C7—H7A110.2N3—C25—C18107.53 (14)
O2—C7—H7B110.2C29—C26—C17115.01 (14)
C8—C7—H7B110.2C29—C26—C27117.66 (13)
H7A—C7—H7B108.5C17—C26—C27103.79 (13)
C7—C8—H8A109.5C29—C26—H26106.5
C7—C8—H8B109.5C17—C26—H26106.5
H8A—C8—H8B109.5C27—C26—H26106.5
C7—C8—H8C109.5N4—C27—C26104.93 (13)
H8A—C8—H8C109.5N4—C27—H27A110.8
H8B—C8—H8C109.5C26—C27—H27A110.8
C10—C9—C14118.29 (14)N4—C27—H27B110.8
C10—C9—C4120.96 (13)C26—C27—H27B110.8
C14—C9—C4120.62 (14)H27A—C27—H27B108.8
C11—C10—C9121.39 (15)N4—C28—H28A109.5
C11—C10—H10119.3N4—C28—H28B109.5
C9—C10—H10119.3H28A—C28—H28B109.5
C10—C11—C12119.42 (15)N4—C28—H28C109.5
C10—C11—H11120.3H28A—C28—H28C109.5
C12—C11—H11120.3H28B—C28—H28C109.5
O3—C12—C13115.67 (15)O6—C29—O7124.42 (16)
O3—C12—C11124.42 (15)O6—C29—C26124.14 (15)
C13—C12—C11119.90 (15)O7—C29—C26111.27 (15)
C14—C13—C12120.14 (15)O7—C30—H30A109.5
C14—C13—H13119.9O7—C30—H30B109.5
C12—C13—H13119.9H30A—C30—H30B109.5
C13—C14—C9120.84 (15)O7—C30—H30C109.5
C13—C14—H14119.6H30A—C30—H30C109.5
C9—C14—H14119.6H30B—C30—H30C109.5
O3—C15—H15A109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3···O5i0.861.972.8189 (18)169

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2427).

References

  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Caramella, P. & Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, Vol. 1, edited by A. Padwa, pp. 291–312. New York: Wiley.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Etter, M. C. (1990). Acc. Chem. Res.23, 120–126.
  • James, D., Kunze, H. B. & Faulkner, D. (1991). J. Nat. Prod.54, 1137–1140. [PubMed]
  • Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H., Ishibashi, M., Sasaki, T. & Mikami, Y. (1991). Tetrahedron47, 6617–6622.
  • Rigaku (2001). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography