PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o353.
Published online 2009 January 23. doi:  10.1107/S1600536809001925
PMCID: PMC2968160

(2,4-Dihydroxy­benzyl­idene)dimethyl­ammonium dichloro­phosphinate

Abstract

In the title compound, C9H12NO2 +·Cl2PO2 , the mol­ecular skeleton of the cation is nearly planar with an r.m.s. deviation of 0.0336 Å. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link cations and anions into chains running along [1An external file that holds a picture, illustration, etc.
Object name is e-65-0o353-efi1.jpg0].

Related literature

For details of the synthesis, see Ramadas & David Krupadanam (2000 [triangle]). For typical values of C=N bond lengths, see Elmah et al. (1999 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o353-scheme1.jpg

Experimental

Crystal data

  • C9H12NO2 +·Cl2O2P
  • M r = 300.07
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o353-efi2.jpg
  • a = 7.922 (4) Å
  • b = 8.163 (4) Å
  • c = 11.035 (9) Å
  • α = 100.021 (19)°
  • β = 107.035 (2)°
  • γ = 103.02 (3)°
  • V = 642.3 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.63 mm−1
  • T = 293 (2) K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.903, T max = 1.000 (expected range = 0.796–0.881)
  • 6473 measured reflections
  • 2898 independent reflections
  • 2374 reflections with I > 2σ(I)
  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043
  • wR(F 2) = 0.116
  • S = 1.06
  • 2898 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809001925/cv2507sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809001925/cv2507Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HJX acknowledges a Start-up Grant from Southeast University, People’s Republic of China.

supplementary crystallographic information

Comment

Vilsmeier conditions are important synthetic tool usually utilized in the synthesis of aldehydes . The title compound is a Vilsmeier intermediate synthesized from resorcinol, DMF and POCl3 in dry CH3CN. Here we report its crystal structure.

In the title compound (Fig. 1), all bond lengths are normal. The C7=N1 bond length of 1.288 (3) Å indicates a high degree of double-bond character comparable with the typical values of C=N bond length (Elmah et al., 1999). The two P—O bond lengths are almost equal - 1.4604 (19) and 1.4642 (18) Å, repectively.

In the crystal, the cations and anions are further connected via O–H···O hydrongen bonds into chains running in direction [1-10].

Experimental

All chemicals were obtained from commercial sources and used without further purification except POCl3 and DMF, which were distiled under reduced pressure before use. The title compound was prepared according to the literature (Ramadas & David Krupadanam, 2000).

Refinement

All H atoms were geometrically positioned (C—H 0.93-0.96 Å, O—H 0.82 Å) and allowed to ride on the parent atoms, with Uiso(H) = 1.2-1.5 Ueq(C, O).

Figures

Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Crystal data

C9H12NO2+·Cl2O2PZ = 2
Mr = 300.07F(000) = 308
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.922 (4) ÅCell parameters from 1854 reflections
b = 8.163 (4) Åθ = 2.7–27.5°
c = 11.035 (9) ŵ = 0.63 mm1
α = 100.021 (19)°T = 293 K
β = 107.035 (2)°Prism, colourless
γ = 103.02 (3)°0.20 × 0.20 × 0.20 mm
V = 642.3 (7) Å3

Data collection

Rigaku Mercury2 diffractometer2898 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
graphiteRint = 0.020
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = −10→10
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −10→10
Tmin = 0.903, Tmax = 1.000l = −14→14
6473 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0563P)2 + 0.2201P] where P = (Fo2 + 2Fc2)/3
2898 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
P10.07808 (7)0.57775 (7)0.79425 (5)0.04024 (16)
Cl2−0.01734 (10)0.66505 (10)0.63397 (6)0.0665 (2)
O10.1067 (2)0.88448 (19)0.41735 (15)0.0469 (4)
H1A0.08230.79610.35920.070*
O20.4455 (2)1.1302 (2)0.17313 (15)0.0556 (4)
H20.53841.20720.18250.083*
C10.3561 (2)1.1426 (2)0.52665 (18)0.0340 (4)
N10.3863 (2)1.2128 (2)0.76201 (16)0.0424 (4)
C60.2445 (3)1.0094 (2)0.40992 (19)0.0342 (4)
C50.2758 (3)1.0099 (3)0.29337 (19)0.0382 (4)
H5A0.20070.92310.21790.046*
C70.3111 (3)1.1237 (3)0.6409 (2)0.0394 (4)
H7A0.20871.02990.62510.047*
C30.5312 (3)1.2722 (3)0.4014 (2)0.0424 (5)
H3A0.62671.35960.39800.051*
C40.4190 (3)1.1396 (3)0.28853 (19)0.0388 (4)
C20.4993 (3)1.2723 (3)0.5167 (2)0.0411 (5)
H2A0.57461.36090.59110.049*
C80.5515 (4)1.3646 (4)0.8156 (2)0.0627 (7)
H8A0.57901.40700.90810.094*
H8B0.52931.45450.77290.094*
H8C0.65411.33150.80090.094*
C90.3073 (4)1.1623 (4)0.8600 (2)0.0642 (7)
H9A0.20071.06240.81780.096*
H9B0.27201.25710.89980.096*
H9C0.39771.13450.92610.096*
Cl10.00162 (13)0.72157 (11)0.92482 (8)0.0820 (3)
O4−0.0294 (3)0.3961 (2)0.76791 (18)0.0643 (5)
O30.2793 (2)0.6276 (3)0.83673 (19)0.0676 (5)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
P10.0420 (3)0.0381 (3)0.0372 (3)0.0040 (2)0.0153 (2)0.0083 (2)
Cl20.0797 (5)0.0756 (5)0.0469 (4)0.0299 (4)0.0158 (3)0.0234 (3)
O10.0444 (8)0.0444 (8)0.0439 (8)−0.0018 (6)0.0192 (7)0.0040 (6)
O20.0622 (11)0.0637 (11)0.0367 (8)0.0029 (8)0.0235 (7)0.0116 (7)
C10.0336 (9)0.0374 (10)0.0300 (9)0.0116 (8)0.0087 (7)0.0087 (7)
N10.0439 (10)0.0527 (11)0.0315 (9)0.0174 (8)0.0129 (7)0.0091 (7)
C60.0322 (9)0.0349 (9)0.0357 (10)0.0108 (7)0.0110 (7)0.0096 (7)
C50.0402 (10)0.0382 (10)0.0320 (10)0.0094 (8)0.0104 (8)0.0047 (8)
C70.0376 (10)0.0439 (11)0.0362 (10)0.0121 (8)0.0121 (8)0.0098 (8)
C30.0410 (11)0.0408 (11)0.0406 (11)0.0031 (8)0.0132 (9)0.0121 (9)
C40.0427 (11)0.0439 (11)0.0323 (10)0.0138 (8)0.0137 (8)0.0133 (8)
C20.0402 (11)0.0395 (10)0.0349 (10)0.0050 (8)0.0074 (8)0.0067 (8)
C80.0578 (15)0.0714 (17)0.0398 (13)0.0026 (12)0.0120 (11)−0.0034 (11)
C90.0794 (18)0.0802 (18)0.0377 (12)0.0198 (14)0.0290 (12)0.0162 (12)
Cl10.1114 (7)0.0773 (5)0.0594 (4)0.0271 (4)0.0444 (4)−0.0020 (3)
O40.0824 (13)0.0392 (9)0.0644 (12)−0.0028 (8)0.0353 (10)0.0061 (8)
O30.0420 (9)0.0902 (14)0.0699 (12)0.0091 (9)0.0166 (8)0.0371 (10)

Geometric parameters (Å, °)

P1—O31.4598 (19)C6—C51.380 (3)
P1—O41.4641 (18)C5—C41.387 (3)
P1—Cl12.0160 (13)C5—H5A0.9300
P1—Cl22.0262 (15)C7—H7A0.9300
O1—C61.349 (2)C3—C21.367 (3)
O1—H1A0.8200C3—C41.401 (3)
O2—C41.342 (3)C3—H3A0.9300
O2—H20.8200C2—H2A0.9300
C1—C21.412 (3)C8—H8A0.9600
C1—C61.426 (3)C8—H8B0.9600
C1—C71.431 (3)C8—H8C0.9600
N1—C71.292 (3)C9—H9A0.9600
N1—C81.470 (3)C9—H9B0.9600
N1—C91.471 (3)C9—H9C0.9600
O3—P1—O4120.75 (12)C1—C7—H7A114.0
O3—P1—Cl1109.16 (10)C2—C3—C4119.5 (2)
O4—P1—Cl1107.38 (8)C2—C3—H3A120.2
O3—P1—Cl2108.40 (8)C4—C3—H3A120.2
O4—P1—Cl2108.48 (9)O2—C4—C5117.32 (18)
Cl1—P1—Cl2100.85 (7)O2—C4—C3122.41 (19)
C6—O1—H1A109.5C5—C4—C3120.26 (19)
C4—O2—H2109.5C3—C2—C1122.27 (18)
C2—C1—C6116.78 (18)C3—C2—H2A118.9
C2—C1—C7128.16 (18)C1—C2—H2A118.9
C6—C1—C7115.03 (18)N1—C8—H8A109.5
C7—N1—C8125.83 (19)N1—C8—H8B109.5
C7—N1—C9119.8 (2)H8A—C8—H8B109.5
C8—N1—C9114.33 (19)N1—C8—H8C109.5
O1—C6—C5121.34 (17)H8A—C8—H8C109.5
O1—C6—C1117.69 (17)H8B—C8—H8C109.5
C5—C6—C1120.97 (18)N1—C9—H9A109.5
C6—C5—C4120.18 (18)N1—C9—H9B109.5
C6—C5—H5A119.9H9A—C9—H9B109.5
C4—C5—H5A119.9N1—C9—H9C109.5
N1—C7—C1131.9 (2)H9A—C9—H9C109.5
N1—C7—H7A114.0H9B—C9—H9C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H1A···O4i0.821.792.609 (3)180
O2—H2···O3ii0.821.832.635 (3)167

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2507).

References

  • Elmah, A., Kabak, M. & Elerman, Y. (1999). J. Mol. Struct.484, 229–234.
  • Ramadas, S. & David Krupadanam, G. L. (2000). Tetrahedron Asymmetry, 11, 3375–3393.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography