PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m125.
Published online 2009 January 8. doi:  10.1107/S1600536808042621
PMCID: PMC2968157

Penta­carbonyl-2κ5 C-chlorido-1κCl-bis­[1(η5)-cyclo­penta­dien­yl](μ-1-oxido­ethyl­ene-1:2κ2 O:C)chromium(0)zirconium(IV)

Abstract

The title compound, [CrZr(C5H5)2(C2H3O)Cl(CO)5], consists of two metal centres, with a (penta­carbonyl­chromium)oxymethyl­carbene group coordinating as a monodentate ligand to the zirconocene chloride. π-Delocalization through the Zr—O—C=Cr unit is indicated by a short Zr—O distance [2.041 (3) Å] and a nearly linear Zr—O—C angle [170.5 (3)°]. Mol­ecules are aligned with their mol­ecular planes (through Zr, Cl, carbene and Cr) parallel to the ab plane. C—H(...)Cl inter­actions result in zigzag chains of mol­ecules propagating parallel to the b axis.

Related literature

For related literature regarding catalytic data of the title compound, see: Sinn et al. (1980 [triangle]); Luruli et al. (2004 [triangle], 2006 [triangle]). For other cases of anionic Fischer-type carbenes being used as monodentate ligands, see: Barluenga & Fañanás (2000 [triangle]). For comparable structures, see: Esterhuysen, Nel & Cronje (2008 [triangle]); Esterhuysen, Neveling et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m125-scheme1.jpg

Experimental

Crystal data

  • [CrZr(C5H5)2(C2H3O)Cl(CO)5]
  • M r = 491.94
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m125-efi1.jpg
  • a = 12.7395 (7) Å
  • b = 12.1117 (6) Å
  • c = 12.7859 (7) Å
  • β = 100.826 (5)°
  • V = 1937.71 (18) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.27 mm−1
  • T = 173 (2) K
  • 0.30 × 0.28 × 0.08 mm

Data collection

  • Philips PW1100 diffractometer
  • Absorption correction: ψ scan (North et al., 1968 [triangle]) T min = 0.68, T max = 0.88
  • 3423 measured reflections
  • 3423 independent reflections
  • 2332 reflections with I > 2σ(I)
  • 3 standard reflections every 50 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.109
  • S = 1.06
  • 3423 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.55 e Å−3
  • Δρmin = −0.58 e Å−3

Data collection: PWPC (Gomm, 1998 [triangle]); cell refinement: PWPC; data reduction: Xtal3.4 (Hall et al., 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: X-SEED (Barbour, 2001 [triangle]; Atwood & Barbour, 2003 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536808042621/at2691sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808042621/at2691Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the NRF, the University of Stellenbosch and the University of Johannesburg for financial support.

supplementary crystallographic information

Comment

Since Cp2TiCl2 was shown to polymerize ethylene when activated by methylaluminoxane, MAO (Sinn et al., 1980), derivatives of this compound have been synthesized where a Cl ligand was replaced by a monodentate anionic Fischer-type carbene ligand (Barluenga and Fañanás, 2000). We have shown that zirconocene equivalents of this family of homogeneous catalysts, Cp2Zr(Cl)OC(R)M(CO)5 (where M = W or Cr), catalyze the oligomerization of 1-pentene, as well as the copolymerization of ethene and 1-pentene, in the presence of MAO (Luruli et al., 2004; Luruli et al., 2006). Herein we report the crystal structure of the title zirconocene complex, (I).

In the molecular structure the Zr—O and O—C distances are similar to those found in the equivalent tungsten pentacarbonyl complex (Esterhuysen, Nel & Cronje, 2008). The Zr—O—C angle, on the other hand, is less linear than the previously published tungsten structure [177.4 (7)°], but similar to the hafnocene complex W(CO)5C(C6H5)OHf(C5H5)2Cl (Esterhuysen, Neveling et al., 2008), where the Hf—O—C angle deviates slightly more from linearity [171.4 (3)°]. These results are indicative of π delocalization through the Zr—O—C = W unit.

Molecules are linked by C—H···Cl interactions into zigzag chains along the b axis. All molecules in a chain point in the same direction, with their molecular planes parallel. Neighbouring chains in the a-direction have the same orientation, thus forming a layer parallel to the ab-plane. Molecules in neighbouring layers in the c-direction have alternating orientations.

Experimental

A solution of LiCH3 (11 ml, 1.5M in diethylether, 16.5 mmol) in 10 ml diethylether was added to a well stirred suspension of Cr(CO)6 (3.30 g, 15.0 mmol) in 100 ml of diethylether over the period of 1.5 h. The mixture was stripped of solvent in vacuo. The residue was dried for 3 h, extracted with cold (273 K), degassed water (1 × 40 ml, 2 × 20 ml) and the formed solution filtered. The aqueous solution was treated with a solution of [NEt4]Cl (2.49 g, 15 mmol) in cold, degassed water (4 ml) and the formed precipitate was isolated and dried overnight in vacuo. The precipitate was dissolved in warm CH2Cl2 (5 ml) layered with penatne and cooled to 258 K to yield yellow crystals of (CO)5Cr{=C(Me)O}[NEt4]. A solution of 0.61 g (2.0 mmol) of the product in 30 ml of CH2Cl2 was added to a solution of Cp2ZrCl2 (0.58 g, 2.0 mmol) in 70 ml of diethylether at 233 K over a period of 40 min. AgBF4 (0.39 g, 2.0 mmol) was then added to the mixture and stirred for an hour at 233 K. After reaching room temperature the solvent was removed in vacuo and the residue extracted in 5 portions of 10 ml of toluene. The extract was filtered, and the filtrate dried over anhydrous MgSO4. The solution was layered with pentane and kept at 258 K to yield orange crystals suitable for X-ray diffraction analysis.

Refinement

H atoms were positioned geometrically, with C—H = 0.95 Å and 0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C). Large anisotropy on atoms C16 and C17 suggests the presence of disorder in the C13–C17 Cp ring, however this could not be modeled. Highest peak: 1.03 Å from Zr1; deepest hole: 1.04 Å from Zr1.

Figures

Fig. 1.
The molecular structure of (I) showing the atomic labelling scheme and displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
A portion of the packing diagram showing zigzag chains of molecules forming a layer perpendicular to the c axis.

Crystal data

[CrZr(C5H5)2(C2H3O)Cl(CO)5]F(000) = 976
Mr = 491.94Dx = 1.686 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 48 reflections
a = 12.7395 (7) Åθ = 2–17°
b = 12.1117 (6) ŵ = 1.26 mm1
c = 12.7859 (7) ÅT = 173 K
β = 100.826 (5)°Plate, orange
V = 1937.71 (18) Å30.30 × 0.28 × 0.08 mm
Z = 4

Data collection

Philips PW1100 diffractometer2332 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.0000
graphiteθmax = 25.0°, θmin = 2.3°
ω–2θ scansh = −15→14
Absorption correction: ψ scan (North et al., 1968)k = 0→14
Tmin = 0.68, Tmax = 0.88l = 0→15
3423 measured reflections3 standard reflections every 50 reflections
3423 independent reflections intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3
3423 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zr10.67690 (3)0.45977 (3)0.79870 (3)0.03838 (16)
Cr20.82371 (6)0.82936 (6)0.79664 (6)0.0441 (2)
Cl10.51592 (14)0.56328 (16)0.80604 (18)0.1054 (7)
O10.6062 (3)0.7896 (4)0.6561 (3)0.0785 (12)
O20.7878 (4)1.0760 (3)0.7936 (4)0.1005 (16)
O30.7167 (4)0.7914 (4)0.9852 (4)0.1065 (17)
O40.9358 (4)0.8437 (4)0.6086 (4)0.0886 (14)
O51.0309 (4)0.8682 (5)0.9517 (4)0.1162 (19)
O60.7769 (3)0.5916 (3)0.8006 (3)0.0532 (9)
C10.6880 (4)0.8052 (4)0.7069 (4)0.0492 (12)
C20.8007 (5)0.9823 (5)0.7944 (4)0.0631 (15)
C30.7572 (5)0.8072 (5)0.9152 (5)0.0627 (15)
C40.8933 (4)0.8394 (4)0.6786 (5)0.0566 (13)
C50.9534 (5)0.8515 (5)0.8931 (5)0.0689 (16)
C60.8496 (4)0.6625 (4)0.7962 (4)0.0449 (11)
C70.9547 (4)0.6101 (5)0.7899 (6)0.086 (2)
H7A1.00800.66780.78710.129*
H7B0.94690.56450.72560.129*
H7C0.97800.56390.85280.129*
C80.8066 (5)0.4232 (6)0.9667 (5)0.0733 (18)
H80.87370.45990.97720.088*
C90.7144 (6)0.4611 (5)0.9977 (4)0.0769 (19)
H90.70650.52871.03320.092*
C100.6349 (5)0.3814 (6)0.9672 (4)0.0758 (18)
H100.56350.38500.97870.091*
C110.6779 (6)0.2982 (5)0.9184 (5)0.0762 (19)
H110.64140.23350.88930.091*
C120.7831 (6)0.3228 (5)0.9179 (5)0.0711 (17)
H120.83150.27790.88870.085*
C130.7269 (6)0.4442 (6)0.6179 (5)0.081 (2)
H130.78430.48670.60120.097*
C140.6228 (6)0.4758 (6)0.6006 (5)0.084 (2)
H140.59430.54450.57270.100*
C150.5653 (7)0.3857 (10)0.6326 (6)0.119 (3)
H150.49010.38140.62820.142*
C160.6386 (11)0.3060 (7)0.6711 (6)0.124 (4)
H160.62280.23650.69890.149*
C170.7361 (9)0.3420 (7)0.6632 (5)0.106 (3)
H170.80110.30270.68540.127*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zr10.0412 (3)0.0306 (2)0.0410 (3)−0.0002 (2)0.00175 (18)0.0023 (2)
Cr20.0464 (5)0.0299 (4)0.0544 (5)0.0011 (3)0.0054 (4)0.0004 (3)
Cl10.0717 (11)0.0871 (13)0.1666 (19)0.0361 (10)0.0464 (12)0.0408 (12)
O10.048 (2)0.097 (3)0.084 (3)0.002 (2)−0.005 (2)0.002 (2)
O20.121 (4)0.035 (2)0.140 (4)0.013 (2)0.013 (3)−0.005 (2)
O30.134 (5)0.122 (4)0.076 (3)0.023 (4)0.053 (3)0.009 (3)
O40.086 (3)0.096 (3)0.094 (3)−0.016 (3)0.042 (3)−0.007 (3)
O50.077 (3)0.118 (4)0.132 (4)−0.015 (3)−0.033 (3)−0.002 (4)
O60.052 (2)0.0333 (18)0.073 (2)−0.0062 (16)0.0079 (17)−0.0001 (16)
C10.058 (3)0.039 (3)0.054 (3)0.008 (2)0.018 (3)0.005 (2)
C20.074 (4)0.041 (3)0.071 (4)0.004 (3)0.007 (3)−0.003 (3)
C30.076 (4)0.055 (3)0.057 (3)0.008 (3)0.010 (3)−0.005 (3)
C40.054 (3)0.045 (3)0.071 (4)−0.008 (3)0.014 (3)0.000 (3)
C50.061 (4)0.052 (3)0.088 (4)−0.007 (3)−0.002 (3)−0.003 (3)
C60.044 (3)0.036 (3)0.052 (3)0.000 (2)0.003 (2)0.002 (2)
C70.048 (3)0.049 (3)0.160 (7)0.008 (3)0.016 (4)0.004 (4)
C80.073 (4)0.076 (4)0.058 (4)−0.007 (4)−0.020 (3)0.016 (3)
C90.115 (6)0.071 (4)0.041 (3)0.015 (4)0.004 (3)−0.011 (3)
C100.083 (5)0.099 (5)0.047 (3)−0.006 (4)0.019 (3)0.015 (3)
C110.124 (6)0.049 (3)0.050 (4)−0.013 (4)0.002 (4)0.014 (3)
C120.084 (5)0.065 (4)0.061 (4)0.026 (4)0.005 (3)0.020 (3)
C130.104 (6)0.093 (5)0.048 (3)−0.021 (4)0.019 (4)−0.003 (3)
C140.100 (5)0.094 (5)0.048 (3)−0.010 (5)−0.007 (3)0.023 (3)
C150.104 (6)0.185 (10)0.053 (4)−0.072 (7)−0.021 (4)−0.008 (5)
C160.232 (12)0.088 (6)0.047 (4)−0.088 (8)0.009 (6)−0.022 (4)
C170.188 (10)0.076 (5)0.058 (4)0.042 (6)0.032 (5)−0.012 (4)

Geometric parameters (Å, °)

Zr1—O62.041 (3)C6—C71.498 (7)
Zr1—Cl12.4205 (16)C7—H7A0.9800
Zr1—C162.463 (7)C7—H7B0.9800
Zr1—C172.470 (6)C7—H7C0.9800
Zr1—C122.476 (5)C8—C121.373 (8)
Zr1—C112.483 (5)C8—C91.387 (9)
Zr1—C152.490 (6)C8—H80.9500
Zr1—C82.492 (5)C9—C101.400 (9)
Zr1—C92.500 (5)C9—H90.9500
Zr1—C102.503 (5)C10—C111.354 (9)
Zr1—C142.504 (6)C10—H100.9500
Zr1—C132.517 (6)C11—C121.374 (9)
Cr2—C21.875 (6)C11—H110.9500
Cr2—C51.885 (6)C12—H120.9500
Cr2—C31.889 (6)C13—C141.358 (9)
Cr2—C41.892 (6)C13—C171.362 (9)
Cr2—C11.910 (6)C13—H130.9500
Cr2—C62.048 (5)C14—C151.417 (10)
O1—C11.135 (6)C14—H140.9500
O2—C21.146 (6)C15—C161.368 (13)
O3—C31.130 (6)C15—H150.9500
O4—C41.131 (6)C16—C171.338 (12)
O5—C51.141 (7)C16—H160.9500
O6—C61.271 (5)C17—H170.9500
O6—Zr1—Cl197.24 (10)C3—Cr2—C687.6 (2)
O6—Zr1—C16130.2 (3)C4—Cr2—C687.8 (2)
Cl1—Zr1—C16110.7 (3)C1—Cr2—C688.58 (19)
O6—Zr1—C17100.8 (3)C6—O6—Zr1170.5 (3)
Cl1—Zr1—C17134.4 (2)O1—C1—Cr2178.0 (5)
C16—Zr1—C1731.5 (3)O2—C2—Cr2179.2 (6)
O6—Zr1—C12104.4 (2)O3—C3—Cr2178.3 (6)
Cl1—Zr1—C12133.79 (17)O4—C4—Cr2178.7 (5)
C16—Zr1—C1285.4 (3)O5—C5—Cr2177.9 (6)
C17—Zr1—C1280.9 (2)O6—C6—C7112.5 (4)
O6—Zr1—C11132.73 (19)O6—C6—Cr2123.2 (3)
Cl1—Zr1—C11106.9 (2)C7—C6—Cr2124.3 (4)
C16—Zr1—C1177.9 (3)C6—C7—H7A109.5
C17—Zr1—C1190.6 (3)C6—C7—H7B109.5
C12—Zr1—C1132.2 (2)H7A—C7—H7B109.5
O6—Zr1—C15123.2 (2)C6—C7—H7C109.5
Cl1—Zr1—C1582.4 (3)H7A—C7—H7C109.5
C16—Zr1—C1532.1 (3)H7B—C7—H7C109.5
C17—Zr1—C1552.7 (3)C12—C8—C9107.3 (6)
C12—Zr1—C15116.3 (3)C12—C8—Zr173.3 (3)
C11—Zr1—C15100.2 (3)C9—C8—Zr174.2 (3)
O6—Zr1—C879.46 (18)C12—C8—H8126.3
Cl1—Zr1—C8119.22 (18)C9—C8—H8126.3
C16—Zr1—C8117.0 (3)Zr1—C8—H8118.2
C17—Zr1—C8105.2 (3)C8—C9—C10107.4 (6)
C12—Zr1—C832.1 (2)C8—C9—Zr173.5 (3)
C11—Zr1—C853.3 (2)C10—C9—Zr173.9 (3)
C15—Zr1—C8148.3 (3)C8—C9—H9126.3
O6—Zr1—C989.1 (2)C10—C9—H9126.3
Cl1—Zr1—C987.62 (17)Zr1—C9—H9118.3
C16—Zr1—C9130.9 (3)C11—C10—C9107.9 (6)
C17—Zr1—C9133.9 (2)C11—C10—Zr173.4 (3)
C12—Zr1—C953.1 (2)C9—C10—Zr173.6 (3)
C11—Zr1—C953.1 (2)C11—C10—H10126.0
C15—Zr1—C9147.1 (3)C9—C10—H10126.0
C8—Zr1—C932.3 (2)Zr1—C10—H10118.8
O6—Zr1—C10121.38 (19)C10—C11—C12108.6 (6)
Cl1—Zr1—C1081.00 (17)C10—C11—Zr175.1 (3)
C16—Zr1—C10103.6 (3)C12—C11—Zr173.6 (3)
C17—Zr1—C10121.9 (3)C10—C11—H11125.7
C12—Zr1—C1052.9 (2)C12—C11—H11125.7
C11—Zr1—C1031.5 (2)Zr1—C11—H11117.6
C15—Zr1—C10114.7 (3)C8—C12—C11108.7 (6)
C8—Zr1—C1053.5 (2)C8—C12—Zr174.6 (3)
C9—Zr1—C1032.5 (2)C11—C12—Zr174.2 (3)
O6—Zr1—C1490.23 (19)C8—C12—H12125.7
Cl1—Zr1—C1485.7 (2)C11—C12—H12125.7
C16—Zr1—C1453.6 (3)Zr1—C12—H12117.5
C17—Zr1—C1452.9 (3)C14—C13—C17109.2 (7)
C12—Zr1—C14133.6 (2)C14—C13—Zr173.8 (4)
C11—Zr1—C14130.8 (2)C17—C13—Zr172.2 (4)
C15—Zr1—C1433.0 (2)C14—C13—H13125.4
C8—Zr1—C14153.9 (3)C17—C13—H13125.4
C9—Zr1—C14173.1 (2)Zr1—C13—H13120.3
C10—Zr1—C14146.9 (2)C13—C14—C15106.2 (7)
O6—Zr1—C1378.71 (18)C13—C14—Zr174.9 (3)
Cl1—Zr1—C13115.91 (19)C15—C14—Zr173.0 (3)
C16—Zr1—C1352.3 (3)C13—C14—H14126.9
C17—Zr1—C1331.7 (2)C15—C14—H14126.9
C12—Zr1—C13108.2 (2)Zr1—C14—H14117.5
C11—Zr1—C13122.3 (2)C16—C15—C14107.0 (8)
C15—Zr1—C1352.6 (3)C16—C15—Zr172.9 (4)
C8—Zr1—C13122.5 (3)C14—C15—Zr174.1 (4)
C9—Zr1—C13154.5 (3)C16—C15—H15126.5
C10—Zr1—C13153.4 (2)C14—C15—H15126.5
C14—Zr1—C1331.4 (2)Zr1—C15—H15118.6
C2—Cr2—C589.1 (2)C17—C16—C15108.9 (8)
C2—Cr2—C393.4 (2)C17—C16—Zr174.5 (4)
C5—Cr2—C388.0 (3)C15—C16—Zr175.0 (5)
C2—Cr2—C491.1 (2)C17—C16—H16125.5
C5—Cr2—C491.6 (3)C15—C16—H16125.5
C3—Cr2—C4175.4 (2)Zr1—C16—H16116.8
C2—Cr2—C191.2 (2)C16—C17—C13108.7 (9)
C5—Cr2—C1176.2 (2)C16—C17—Zr174.0 (5)
C3—Cr2—C188.2 (2)C13—C17—Zr176.1 (4)
C4—Cr2—C192.2 (2)C16—C17—H17125.7
C2—Cr2—C6178.9 (2)C13—C17—H17125.6
C5—Cr2—C691.2 (2)Zr1—C17—H17116.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C16—H16···Cl1i0.952.743.581 (8)149

Symmetry codes: (i) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2691).

References

  • Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des.3, 3–8.
  • Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  • Barluenga, J. & Fañanás, F. J. (2000). Tetrahedron, 56, 4597–4628.
  • Esterhuysen, C., Nel, I. B. J. & Cronje, S. (2008). Acta Cryst. E64, m1150. [PMC free article] [PubMed]
  • Esterhuysen, C., Neveling, A., Luruli, N., Kruger, G. J. & Cronje, S. (2008). Acta Cryst. E64, m1252. [PMC free article] [PubMed]
  • Gomm, M. (1998). PWPC Institut für Angewandte Physik, Erlangen, Germany.
  • Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual University of Western Australia: Lamb, Perth.
  • Luruli, N., Grumel, V., Brüll, R., Du Toit, A., Pasch, H., Van Reenen, A. J. & Raubenheimer, H. G. (2004). J. Polym. Sci. [A1], pp. 5121–5133.
  • Luruli, N., Heinz, L. C., Grumel, V., Brüll, R., Pasch, H. & Raubenheimer, H. G. (2006). Polymer, 47, 56–66.
  • North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Sinn, H., Kaminsky, W., Vollmer, H. J. & Woldt, R. (1980). Angew. Chem. Int. Ed. Engl.19, 390–392.
  • Westrip, S. P. (2009). publCIF In preparation.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography