PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o439.
Published online 2009 January 31. doi:  10.1107/S1600536809003419
PMCID: PMC2968156

1,3-Dimethyl-2,6-diphenyl­piperidin-4-one

Abstract

In the title moleclue, C19H21NO, the 4-piperidone ring adopts a chair conformation in which the two benzene rings and the methyl group attached to C atoms all have equatorial orientations. In the crystal structure, centrosymmetric dimers are formed through weak inter­molecular C—H(...)O hydrogen bonds [the dihedral angle between the aromatic rings is 58.51 (5)°].

Related literature

For general background, see: Badorrey et al. (1999 [triangle]); Grishina et al. (1994 [triangle]); Nalanishi et al. (1974 [triangle]); Perumal et al. (2001 [triangle]); Ponnuswamy et al. (2002 [triangle]). For a related crystal structure, see: Gayathri et al. (2008 [triangle]). For the synthetis, see: Noller & Baliah (1948 [triangle]). For puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle], 1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o439-scheme1.jpg

Experimental

Crystal data

  • C19H21NO
  • M r = 279.37
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o439-efi1.jpg
  • a = 5.9201 (2) Å
  • b = 10.9749 (3) Å
  • c = 12.8247 (3) Å
  • α = 80.2961 (12)°
  • β = 86.673 (2)°
  • γ = 76.4499 (11)°
  • V = 798.30 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 290 (2) K
  • 0.28 × 0.21 × 0.18 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.943, T max = 0.987
  • 12316 measured reflections
  • 3143 independent reflections
  • 2446 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.116
  • S = 1.02
  • 3143 reflections
  • 192 parameters
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.15 e Å−3

Data collection: SMART (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2004 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809003419/lh2761sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809003419/lh2761Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST program at the IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

supplementary crystallographic information

Comment

The synthesis of 4-piperidones is of current interest due to their potential medical applications (Grishina et al., 1994, Ponnuswamy et al., 2002). 4-Piperidones have been found to exhibit blood cholesterol-lowering activities (Nalanishi et al., 1974). Various piperidones and piperidine derivatives are present in numerous alkaloids (Badorrey et al., 1999). Piperidones are also reported to possess analgesic, anti-inflammatory, central nervous system (CNS), local anaesthetic, anticancer and antimicrobial activity (Perumal et al., 2001).

In the title molecule, C19H20NO (Fig. 1), the piperidine ring adopts a chair conformation (Cremer & Pople, 1975; Nardelli, 1995). The phenyl rings at positions 2 and 6 and the methyl group attached at position 3 all have equatorial orientations. In the related crystal structure of r-2,c-6-Bis(4-chlorophenyl)-t-3-isopropyl-1-nitrosopiperidin-4-one, the piperidine ring also adopts a chair conformation (Gayathri et al., 2008) but the three substituents on the C atoms of the ring are in axial orientations. In the crystal structure, centrosymmetric dimers are formed through weak intermolecular C—H···O hydrogen bonds (Fig. 2).

Experimental

The sythesis was based on a procedure in the literature (Noller & Baliah, 1948). Benzaldehyde (0.20 mol), 3-methyl-2-butanone (0.10 mol) and ammonium acetate (0.10 mol) were dissolved in 80 ml of distilled ethanol and heated over a boiling water bath, with shaking until a yellow colour developed and ultimately changed to orange. The solution was left undisturbed for 14 h. The precipitated solid was filtered and purified by recrystallization from ethanol. The piperidone intermediate was then dissolved in acetone and was alkyalted with methyliodide in the presence of potassium carbonate.

Refinement

All H atoms in were positioned geometrically and refined using a riding model with C—H bond lenghts of 0.93, 0.97 and 0.96Å for aromatic, methylene and methyl H atoms, respectively and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl bound H atoms.

Figures

Fig. 1.
The molecular structure of (I) shown with 50% probability displacement ellipsoids.
Fig. 2.
Part of the crystal structure of (I) with dashed lines indicating intermolecular C—H···O hydrogen bonds.

Crystal data

C19H21NOZ = 2
Mr = 279.37F(000) = 300
Triclinic, P1Dx = 1.162 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.9201 (2) ÅCell parameters from 873 reflections
b = 10.9749 (3) Åθ = 1.9–20.8°
c = 12.8247 (3) ŵ = 0.07 mm1
α = 80.2961 (12)°T = 290 K
β = 86.673 (2)°Block, colorless
γ = 76.4499 (11)°0.28 × 0.21 × 0.18 mm
V = 798.30 (4) Å3

Data collection

Bruker SMART CCD area-detector diffractometer3143 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
graphiteRint = 0.019
[var phi] and ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −6→7
Tmin = 0.943, Tmax = 0.987k = −13→13
12316 measured reflectionsl = −15→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0539P)2 + 0.1409P] where P = (Fo2 + 2Fc2)/3
3143 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.17010 (18)0.40892 (9)0.73876 (8)0.0419 (3)
O10.25711 (17)0.47960 (11)1.03053 (7)0.0615 (3)
C10.1134 (2)0.54013 (12)0.76264 (10)0.0419 (3)
H1−0.04570.55820.79160.050*
C20.2788 (3)0.55376 (14)0.84570 (11)0.0532 (4)
H2A0.43360.54750.81460.064*
H2B0.22760.63700.86650.064*
C30.2882 (2)0.45443 (14)0.94154 (10)0.0485 (3)
C40.3367 (3)0.32119 (14)0.91755 (11)0.0532 (4)
H40.49230.30300.88500.064*
C50.1607 (2)0.31444 (12)0.83478 (10)0.0432 (3)
H50.00400.33390.86610.052*
C60.2066 (2)0.18211 (12)0.80603 (10)0.0467 (3)
C70.4060 (3)0.13480 (14)0.75020 (12)0.0571 (4)
H70.51530.18370.73190.069*
C80.4446 (3)0.01556 (15)0.72124 (14)0.0711 (5)
H80.5799−0.01480.68400.085*
C90.2867 (4)−0.05793 (15)0.74677 (15)0.0748 (5)
H90.3126−0.13740.72610.090*
C100.0903 (4)−0.01377 (16)0.80298 (17)0.0791 (5)
H10−0.0170−0.06390.82140.095*
C110.0495 (3)0.10595 (15)0.83308 (14)0.0656 (4)
H11−0.08460.13480.87170.079*
C120.1264 (2)0.63589 (12)0.66384 (10)0.0428 (3)
C13−0.0613 (3)0.73494 (13)0.63339 (12)0.0536 (4)
H13−0.19870.74190.67330.064*
C14−0.0475 (3)0.82404 (14)0.54407 (13)0.0658 (4)
H14−0.17520.89020.52450.079*
C150.1535 (3)0.81493 (15)0.48471 (13)0.0675 (5)
H150.16290.87510.42520.081*
C160.3413 (3)0.71672 (17)0.51319 (13)0.0687 (5)
H160.47760.71010.47250.082*
C170.3284 (3)0.62776 (15)0.60201 (12)0.0579 (4)
H170.45650.56160.62070.070*
C180.0031 (3)0.39902 (14)0.66175 (12)0.0623 (4)
H18A−0.15040.41320.69280.093*
H18B0.04390.31580.64220.093*
H18C0.00690.46160.59990.093*
C190.3365 (4)0.22361 (19)1.01678 (14)0.0942 (7)
H19A0.43690.23681.06790.141*
H19B0.39100.13980.99930.141*
H19C0.18140.23261.04580.141*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0505 (6)0.0408 (5)0.0341 (6)−0.0089 (5)−0.0065 (4)−0.0056 (4)
O10.0534 (6)0.0987 (8)0.0390 (6)−0.0236 (5)0.0017 (4)−0.0217 (5)
C10.0439 (7)0.0439 (7)0.0377 (7)−0.0076 (5)−0.0009 (5)−0.0097 (5)
C20.0664 (9)0.0558 (8)0.0426 (8)−0.0190 (7)−0.0068 (6)−0.0132 (6)
C30.0408 (7)0.0708 (9)0.0369 (7)−0.0152 (6)−0.0045 (5)−0.0120 (6)
C40.0567 (8)0.0602 (8)0.0391 (7)−0.0083 (7)−0.0098 (6)−0.0021 (6)
C50.0426 (7)0.0471 (7)0.0378 (7)−0.0091 (5)0.0007 (5)−0.0032 (5)
C60.0483 (8)0.0455 (7)0.0437 (7)−0.0102 (6)−0.0050 (6)0.0006 (6)
C70.0632 (9)0.0483 (8)0.0588 (9)−0.0138 (7)0.0082 (7)−0.0069 (7)
C80.0846 (12)0.0519 (9)0.0729 (11)−0.0073 (8)0.0069 (9)−0.0134 (8)
C90.0964 (14)0.0446 (8)0.0832 (12)−0.0136 (9)−0.0167 (10)−0.0081 (8)
C100.0831 (13)0.0558 (9)0.1021 (14)−0.0323 (9)−0.0123 (11)0.0036 (10)
C110.0572 (9)0.0586 (9)0.0795 (11)−0.0193 (7)0.0017 (8)0.0004 (8)
C120.0511 (7)0.0410 (6)0.0388 (7)−0.0118 (5)−0.0038 (5)−0.0105 (5)
C130.0614 (9)0.0448 (7)0.0522 (8)−0.0046 (6)−0.0024 (6)−0.0112 (6)
C140.0908 (12)0.0407 (7)0.0607 (10)−0.0037 (7)−0.0145 (9)−0.0052 (7)
C150.1055 (14)0.0528 (9)0.0486 (9)−0.0318 (9)−0.0065 (9)0.0003 (7)
C160.0750 (11)0.0822 (11)0.0516 (9)−0.0312 (9)0.0058 (8)−0.0018 (8)
C170.0536 (9)0.0651 (9)0.0509 (9)−0.0106 (7)0.0006 (6)−0.0018 (7)
C180.0852 (11)0.0505 (8)0.0540 (9)−0.0167 (7)−0.0292 (8)−0.0049 (7)
C190.146 (2)0.0797 (12)0.0527 (11)−0.0258 (12)−0.0310 (11)0.0125 (9)

Geometric parameters (Å, °)

N1—C181.4711 (16)C9—C101.365 (3)
N1—C51.4777 (15)C9—H90.9300
N1—C11.4800 (15)C10—C111.395 (2)
O1—C31.2128 (15)C10—H100.9300
C1—C121.5145 (18)C11—H110.9300
C1—C21.5363 (18)C12—C131.3820 (19)
C1—H10.9800C12—C171.390 (2)
C2—C31.493 (2)C13—C141.387 (2)
C2—H2A0.9700C13—H130.9300
C2—H2B0.9700C14—C151.367 (2)
C3—C41.503 (2)C14—H140.9300
C4—C191.519 (2)C15—C161.372 (2)
C4—C51.5520 (18)C15—H150.9300
C4—H40.9800C16—C171.381 (2)
C5—C61.5175 (18)C16—H160.9300
C5—H50.9800C17—H170.9300
C6—C111.383 (2)C18—H18A0.9600
C6—C71.384 (2)C18—H18B0.9600
C7—C81.384 (2)C18—H18C0.9600
C7—H70.9300C19—H19A0.9600
C8—C91.364 (3)C19—H19B0.9600
C8—H80.9300C19—H19C0.9600
C18—N1—C5109.46 (10)C8—C9—C10119.37 (16)
C18—N1—C1108.63 (10)C8—C9—H9120.3
C5—N1—C1111.85 (9)C10—C9—H9120.3
N1—C1—C12111.33 (10)C9—C10—C11120.50 (16)
N1—C1—C2110.45 (10)C9—C10—H10119.7
C12—C1—C2109.68 (10)C11—C10—H10119.7
N1—C1—H1108.4C6—C11—C10120.59 (16)
C12—C1—H1108.4C6—C11—H11119.7
C2—C1—H1108.4C10—C11—H11119.7
C3—C2—C1112.04 (11)C13—C12—C17118.07 (13)
C3—C2—H2A109.2C13—C12—C1120.95 (12)
C1—C2—H2A109.2C17—C12—C1120.97 (12)
C3—C2—H2B109.2C12—C13—C14120.86 (15)
C1—C2—H2B109.2C12—C13—H13119.6
H2A—C2—H2B107.9C14—C13—H13119.6
O1—C3—C2122.76 (13)C15—C14—C13120.18 (15)
O1—C3—C4123.25 (13)C15—C14—H14119.9
C2—C3—C4113.99 (11)C13—C14—H14119.9
C3—C4—C19112.28 (13)C14—C15—C16119.84 (15)
C3—C4—C5108.87 (11)C14—C15—H15120.1
C19—C4—C5112.70 (13)C16—C15—H15120.1
C3—C4—H4107.6C15—C16—C17120.21 (16)
C19—C4—H4107.6C15—C16—H16119.9
C5—C4—H4107.6C17—C16—H16119.9
N1—C5—C6110.17 (10)C16—C17—C12120.83 (14)
N1—C5—C4110.93 (10)C16—C17—H17119.6
C6—C5—C4110.79 (10)C12—C17—H17119.6
N1—C5—H5108.3N1—C18—H18A109.5
C6—C5—H5108.3N1—C18—H18B109.5
C4—C5—H5108.3H18A—C18—H18B109.5
C11—C6—C7117.95 (13)N1—C18—H18C109.5
C11—C6—C5121.26 (13)H18A—C18—H18C109.5
C7—C6—C5120.78 (12)H18B—C18—H18C109.5
C6—C7—C8120.81 (15)C4—C19—H19A109.5
C6—C7—H7119.6C4—C19—H19B109.5
C8—C7—H7119.6H19A—C19—H19B109.5
C9—C8—C7120.77 (17)C4—C19—H19C109.5
C9—C8—H8119.6H19A—C19—H19C109.5
C7—C8—H8119.6H19B—C19—H19C109.5
C18—N1—C1—C12−59.74 (14)N1—C5—C6—C755.01 (16)
C5—N1—C1—C12179.33 (10)C4—C5—C6—C7−68.12 (16)
C18—N1—C1—C2178.16 (11)C11—C6—C7—C80.9 (2)
C5—N1—C1—C257.22 (13)C5—C6—C7—C8−178.08 (14)
N1—C1—C2—C3−52.14 (15)C6—C7—C8—C90.2 (3)
C12—C1—C2—C3−175.21 (11)C7—C8—C9—C10−1.1 (3)
C1—C2—C3—O1−127.65 (13)C8—C9—C10—C110.8 (3)
C1—C2—C3—C451.65 (16)C7—C6—C11—C10−1.1 (2)
O1—C3—C4—C191.3 (2)C5—C6—C11—C10177.82 (14)
C2—C3—C4—C19−178.02 (14)C9—C10—C11—C60.3 (3)
O1—C3—C4—C5126.78 (13)N1—C1—C12—C13124.49 (13)
C2—C3—C4—C5−52.51 (15)C2—C1—C12—C13−112.96 (14)
C18—N1—C5—C656.39 (14)N1—C1—C12—C17−56.44 (15)
C1—N1—C5—C6176.84 (10)C2—C1—C12—C1766.11 (15)
C18—N1—C5—C4179.44 (11)C17—C12—C13—C14−0.4 (2)
C1—N1—C5—C4−60.11 (13)C1—C12—C13—C14178.66 (12)
C3—C4—C5—N155.96 (14)C12—C13—C14—C150.0 (2)
C19—C4—C5—N1−178.79 (13)C13—C14—C15—C160.5 (2)
C3—C4—C5—C6178.65 (11)C14—C15—C16—C17−0.5 (2)
C19—C4—C5—C6−56.09 (17)C15—C16—C17—C120.0 (2)
N1—C5—C6—C11−123.92 (14)C13—C12—C17—C160.5 (2)
C4—C5—C6—C11112.95 (15)C1—C12—C17—C16−178.65 (13)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O1i0.982.563.3535 (16)139

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2761).

References

  • Badorrey, R., Cativiela, C., Diaz-de-Villegas, M. D. & Galvez, J. A. (1999). Tetrahedron, 55, 7601–7612.
  • Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gayathri, P., Thiruvalluvar, A., Manimekalai, A., Sivakumar, S. & Butcher, R. J. (2008). Acta Cryst. E64, o1973. [PMC free article] [PubMed]
  • Grishina, G. V., Gaidarova, E. L. & Zefirov, N. S. (1994). Chem. Heterocycl. Compd.30, 401–1426.
  • Nalanishi, M., Shiraki, M., Kobayakawa, T. & Kobayashi, R. (1974). Jpn Patent 74-03987.
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Noller, C. & Baliah, V. (1948). J. Am. Chem. Soc.70, 3853–3855. [PubMed]
  • Perumal, R. V., Agiraj, M. & Shanmugapandiyan, P. (2001). Indian Drugs, 38, 156–159.
  • Ponnuswamy, S., Venkatraj, M., Jeyaraman, R., Suresh Kumar, M., Kumaran, D. & Ponnuswamy, M. N. (2002). Indian J. Chem. Sect. B, 41, 614–627.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography