PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m144–m145.
Published online 2009 January 8. doi:  10.1107/S1600536808043390
PMCID: PMC2968152

Di-μ-chlorido-bis­[chlorido(1,4,6-trimethyl-6-nitro-1,4-diazepine)copper(II)]

Abstract

The title neutral copper complex, [Cu2Cl4(C8H17N3O2)2], shows a binuclear center with a Cu—(μ-Cl)2—Cu core, in which each copper ion is coordinated by the N,N,O donor atoms of the tridentate ligand 1,4,6-trimethyl-6-nitro-1,4-diazepine (meaaz-NO2) and three chloride exogenous ligands. Each metal ion is facially coordinated by meaaz-NO2 through N,N,O donor atoms, whereas two bridging and one terminal chloride ions occupy the other face of the highly Jahn–Teller-distorted octa­hedron. Two N atoms from tertiary amine groups of the meaaz-NO2 ligand and two exogenous Cl atoms with short Cu—N and Cu—Cl distances define the equatorial plane. The coordination around each CuII ion is completed by another Cl atom and an O atom from the NO2 group, in the axial positions. The binuclear complex exhibits a centrosymmetric structure with point symmetry An external file that holds a picture, illustration, etc.
Object name is e-65-0m144-efi1.jpg.

Related literature

For related literature, see: Belousoff et al. (2006 [triangle]); Deal & Burstyn (1996 [triangle]); Fry et al. (2005 [triangle]); Hegg & Burstyn (1998 [triangle]); Peralta et al. (2005 [triangle]); Rodriguez, et al. (1999 [triangle]); Romba et al. (2006 [triangle]). For the synthesis of the meaaz-NO2 ligand see Ge et al. (2006 [triangle]). For related structures, see: Astner et al. (2008 [triangle]); Schwindinger et al. (1980 [triangle]); Steed et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m144-scheme1.jpg

Experimental

Crystal data

  • [Cu2Cl4(C8H17N3O2)2]
  • M r = 643.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m144-efi2.jpg
  • a = 10.5478 (2) Å
  • b = 10.9251 (2) Å
  • c = 11.4430 (2) Å
  • β = 102.297 (1)°
  • V = 1288.39 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.10 mm−1
  • T = 296 (2) K
  • 0.31 × 0.14 × 0.09 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2006 [triangle]) T min = 0.562, T max = 0.833
  • 25284 measured reflections
  • 2528 independent reflections
  • 2080 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.083
  • S = 1.07
  • 2528 reflections
  • 148 parameters
  • H-atom parameters constrained
  • Δρmax = 0.76 e Å−3
  • Δρmin = −0.37 e Å−3

Data collection: APEX2, BIS and COSMO (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2003 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043390/pk2138sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043390/pk2138Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Financiadora de Estudos e Projetos (FINEP) for financial support. The authors also thank to Dr Manfredo Hörner and Dr Robert A. Burrow at Universidade Federal de Santa Maria for the crystallographic facilities.

supplementary crystallographic information

Comment

Tridentate ligands that are able to force facial geometry, such as 1,4,7-tacn (1,4,7-triazacyclononane), daza (1,4-diazepan-6-amine) (Romba, et al., 2006), tach (cis,cis-1,3,5-triaminocyclohexane) (Hegg & Burstyn, 1998), play an important role in the stabilization of a great number of structural motifs in coordination compounds and in biological systems (Peralta et al., 2005). Copper complexes with this kind of ligand have been reported over the past few years with a view to the study of the hydrolysis of phosphate esters, proteins and DNA (Deal & Burstyn, 1996; Fry et al., 2005). Indeed such copper(II) complexes exhibit high catalytic reactivity in the hydrolysis of DNA model diesters as bis(4-nitrophenyl)phosphate with rate constants of ≈ 10 -4 s-1 (Belousoff et al., 2006). In this context we report herein the synthesis and X-ray analysis of a new dinuclear copper complex with the tridentate ligand meaaz-NO2.

This neutral copper complex exhibits a centrosymmetric structure (Fig. 1) with a highly distorted octahedral environment around the copper center. Each metal ion is facially coordinated by meaaz-NO2 through N2O donors atoms, whereas two bridged and one terminal coordinated chlorines occupy the other face of the distorted octahedron. Two amine nitrogen atoms (N3 and N6) of the ligand and two exogenous chlorines (Cl1, Cl2) lie in the equatorial plane. The coordination sphere of Cu1 is completed by another chlorine (Cl2') and an oxygen atom (O2) from the NO2 group, in the axial positions. In the equatorial plane, the Cu—N and Cu—Cl bond lengths are Cu1—N6 2.064 (2) Å, Cu1—N3 2.122 (2) Å, Cu1—Cl2 2.2686 (7) Å and Cu1—Cl1 2.2694 (7) Å), respectively. The longer bond lengths Cu1—Cl2' (2.7611 (8) Å) and Cu1—O2 (2.845 (2) Å) are associated with the two apical positions, as expected for a (4 + 2) distorted geometry, as is common for CuII. The Cu—N and the Cu—Cl bond lengths in the equatorial plane are comparable to those found for other copper complexes [Cu(tacn)Cl2] (Cu—N2 2.063 (4) Å, Cu—N3 2.038 (4) Å, CU—Cl1 2.268 (1) Å and Cu—Cl2 2.312 (1) Å) (Schwindinger, et al., 1980), [Cu2(µ-Cl)2(Me-bpa)2(ClO4)2] (Me-bpa = N-methyl-bis(2-pyridylmethyl)amine) (Cu1—N36 1.983 (2) Å, Cu1—N10 2.036 (2) Å, Cu1—N26 1.989 (2) Å and Cu1—Cl1 2.2587 (6) Å) (Astner et al., 2008) and [Cu(me3tacn)Cl2] (Cu1—N1 2.100 (2) Å, Cu1—N2 2.111 (2) Å, Cu1—Cl2 2.2558 (9) Å and Cu1—Cl1 2.3050 (8) Å) (Steed et al., 2007). The seven-membered chelate ring of the meaaz-NO2 ligand restricts the N—Cu—N angle to 77.35 (8)°, which is about 6° smaller than the respective angles formed by nine-membered ring in the Cu-tacn complexes.

As described in Rodriguez, et al. (1999), there are three kinds of configurations for copper complex containing the Cu-(µ-Cl)2—Cu core: Type I, in which two square pyramids share one base-to-apex edge with the two bases nearly perpendicular to one another; Type II, square pyramids sharing one base-to-apex edge but with parallel basal planes and Type III, square pyramids sharing a basal edge with coplanar basal planes. The configuration of the Cu centers reported here are Type II given that the axial positions of one copper(II) center is directed toward the top and the same axis of the adjacent center is in the anti position. Although the Cu centers in the complex are hexacoordinate, it can be considered as type II, because the sixth coordination bond is very long (Cu—O2 = 2.845 (2)Å).

The packing is mainly governed by weak C—H···O and C—H···Cl interactions with average D···A distances of 2.99 Å and 3.74 Å, respectively. In addition, the packing analysis reveals that the molecules are accomodated in layers parallel to the (001) plane and are stacked along crystallographic a axis (Fig. 2).

Experimental

The ligand 6-nitro-1,4,7-trimethyl-1,4-diazepine (meaaz-NO2) was prepared as reported in the literature (Ge et al., 2006). The ligand was obtained with good yeld and was characterized by 1H NMR [δ (p.p.m.) (CDCl3) 400 MHz: 1.46 (s, 3H); 2.36 (s, 6H); 2.48 (m, 2H); 2.56 (m, 2H); 2.66 and 3.36 (AB system, 4H)].

Copper complex was synthesized by adding 187 mg of the ligand meaaz-NO2 (1.0 mmol) to a CH3CN solution containing CuCl2.2H2O (171 mg, 1.0 mmol). The solution was then concentrated under magnetic stirring and was allowed to stand at room temperature for a few days, yielding a small number of dark green crystals which were suitable for the single-crystal X-ray analysis.

Refinement

H atoms were placed at their idealized positions with distances of 0.97 and 0.96 Å and Ueq fixed at 1.2 and 1.5 times Uiso of the preceding atom for CH2 and CH3, respectively.

Figures

Fig. 1.
A view of the molecular structure of copper complex showing the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are omitted for clarity.
Fig. 2.
View down the a axis of the packing of copper complex.

Crystal data

[Cu2Cl4(C8H17N3O2)2]F(000) = 660
Mr = 643.37Dx = 1.658 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6584 reflections
a = 10.5478 (2) Åθ = 2.6–29.9°
b = 10.9251 (2) ŵ = 2.10 mm1
c = 11.4430 (2) ÅT = 296 K
β = 102.297 (1)°Block, dark green
V = 1288.39 (4) Å30.31 × 0.14 × 0.09 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2528 independent reflections
Radiation source: fine-focus sealed tube2080 reflections with I > 2σ(I)
graphiteRint = 0.036
[var phi] and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2006)h = −13→12
Tmin = 0.562, Tmax = 0.833k = −13→13
25284 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0432P)2 + 0.7796P] where P = (Fo2 + 2Fc2)/3
2528 reflections(Δ/σ)max = 0.001
148 parametersΔρmax = 0.76 e Å3
0 restraintsΔρmin = −0.37 e Å3

Special details

Experimental. Absorption correction: SADABS (Bruker, 2006) was used to scale the data and to perform the multi-scan semi-empirical absorption correction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu10.41672 (3)0.13540 (3)1.03616 (3)0.03146 (12)
Cl10.45369 (7)0.11762 (7)1.23819 (6)0.0467 (2)
Cl20.62792 (6)0.10672 (6)1.02889 (7)0.04311 (19)
N10.4017 (2)0.4025 (2)1.0951 (2)0.0379 (5)
C10.2738 (2)0.3853 (2)0.9997 (2)0.0328 (6)
C20.3105 (2)0.3551 (2)0.8818 (2)0.0323 (5)
H2A0.23440.36650.81820.039*
H2B0.37520.41380.86890.039*
N30.3623 (2)0.22930 (18)0.87072 (18)0.0305 (5)
C40.2543 (3)0.1488 (2)0.8105 (2)0.0385 (6)
H4A0.28870.07050.79190.046*
H4B0.20990.18620.73610.046*
C50.1594 (3)0.1294 (2)0.8915 (2)0.0384 (6)
H5A0.08390.18090.86470.046*
H5B0.13070.04480.88600.046*
N60.2196 (2)0.15908 (19)1.01947 (18)0.0318 (5)
C70.1930 (3)0.2888 (3)1.0467 (2)0.0392 (6)
H7A0.20710.29781.13290.047*
H7B0.10210.30561.01390.047*
C80.2051 (3)0.5099 (3)0.9930 (3)0.0437 (7)
H8A0.26070.57210.97230.065*
H8B0.18570.52861.06930.065*
H8C0.12600.50680.93330.065*
O20.5045 (2)0.38177 (18)1.0687 (2)0.0487 (5)
O10.3919 (3)0.4391 (3)1.1928 (2)0.0739 (8)
C110.4596 (3)0.2357 (3)0.7947 (3)0.0458 (7)
H11A0.49050.15480.78340.069*
H11B0.53100.28600.83300.069*
H11C0.42040.27030.71850.069*
C120.1585 (3)0.0810 (3)1.0982 (3)0.0480 (7)
H12A0.19480.10031.18030.072*
H12B0.1745−0.00361.08370.072*
H12C0.06670.09571.08150.072*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.02805 (18)0.03469 (19)0.02830 (19)0.00043 (12)−0.00153 (12)0.00140 (13)
Cl10.0457 (4)0.0598 (5)0.0286 (3)−0.0011 (3)−0.0057 (3)0.0030 (3)
Cl20.0305 (3)0.0414 (4)0.0548 (4)0.0014 (3)0.0034 (3)−0.0005 (3)
N10.0431 (14)0.0303 (12)0.0341 (13)0.0022 (10)−0.0052 (10)−0.0050 (10)
C10.0286 (13)0.0343 (14)0.0307 (13)0.0012 (10)−0.0043 (10)−0.0038 (10)
C20.0350 (13)0.0290 (13)0.0291 (13)−0.0018 (10)−0.0014 (10)0.0010 (10)
N30.0340 (11)0.0295 (11)0.0264 (10)−0.0021 (8)0.0026 (8)−0.0009 (9)
C40.0474 (16)0.0340 (15)0.0280 (13)−0.0064 (11)−0.0059 (11)−0.0032 (11)
C50.0362 (14)0.0385 (15)0.0339 (14)−0.0074 (11)−0.0071 (11)−0.0005 (11)
N60.0291 (11)0.0348 (12)0.0290 (11)−0.0026 (9)0.0004 (9)0.0036 (9)
C70.0367 (14)0.0420 (16)0.0389 (15)0.0005 (11)0.0080 (12)−0.0009 (12)
C80.0431 (16)0.0391 (15)0.0450 (16)0.0096 (12)0.0008 (13)−0.0041 (13)
O20.0340 (11)0.0482 (12)0.0561 (13)−0.0006 (8)−0.0078 (9)−0.0021 (10)
O10.0730 (17)0.095 (2)0.0429 (13)0.0211 (14)−0.0124 (11)−0.0325 (13)
C110.0544 (18)0.0485 (17)0.0381 (15)0.0034 (14)0.0176 (13)0.0033 (13)
C120.0418 (16)0.0530 (18)0.0499 (18)−0.0078 (13)0.0114 (13)0.0137 (15)

Geometric parameters (Å, °)

Cu1—N62.064 (2)C4—H4A0.9700
Cu1—N32.122 (2)C4—H4B0.9700
Cu1—Cl22.2686 (7)C5—N61.502 (3)
Cu1—Cl12.2694 (7)C5—H5A0.9700
Cu1—Cl2i2.7611 (8)C5—H5B0.9700
Cu1—O22.845 (2)N6—C121.484 (3)
Cl2—Cu1i2.7611 (8)N6—C71.491 (3)
N1—O21.207 (3)C7—H7A0.9700
N1—O11.212 (3)C7—H7B0.9700
N1—C11.556 (3)C8—H8A0.9600
C1—C21.517 (4)C8—H8B0.9600
C1—C71.524 (4)C8—H8C0.9600
C1—C81.536 (4)C11—H11A0.9600
C2—N31.495 (3)C11—H11B0.9600
C2—H2A0.9700C11—H11C0.9600
C2—H2B0.9700C12—H12A0.9600
N3—C111.482 (3)C12—H12B0.9600
N3—C41.487 (3)C12—H12C0.9600
C4—C51.517 (4)
N6—Cu1—N377.35 (8)N3—C4—H4B109.7
N6—Cu1—Cl2172.72 (6)C5—C4—H4B109.7
N3—Cu1—Cl296.62 (6)H4A—C4—H4B108.2
N6—Cu1—Cl193.22 (6)N6—C5—C4111.6 (2)
N3—Cu1—Cl1154.87 (6)N6—C5—H5A109.3
Cl2—Cu1—Cl193.93 (3)C4—C5—H5A109.3
N6—Cu1—Cl2i89.11 (6)N6—C5—H5B109.3
N3—Cu1—Cl2i102.97 (6)C4—C5—H5B109.3
Cl2—Cu1—Cl2i88.29 (2)H5A—C5—H5B108.0
Cl1—Cu1—Cl2i100.08 (3)C12—N6—C7107.1 (2)
N6—Cu1—O2100.77 (7)C12—N6—C5108.6 (2)
N3—Cu1—O271.22 (7)C7—N6—C5110.5 (2)
Cl2—Cu1—O280.84 (5)C12—N6—Cu1115.53 (16)
Cl1—Cu1—O288.12 (5)C7—N6—Cu1109.30 (15)
Cl2i—Cu1—O2166.84 (5)C5—N6—Cu1105.75 (16)
Cu1—Cl2—Cu1i91.71 (2)N6—C7—C1116.1 (2)
O2—N1—O1123.4 (2)N6—C7—H7A108.3
O2—N1—C1119.5 (2)C1—C7—H7A108.3
O1—N1—C1117.1 (2)N6—C7—H7B108.3
C2—C1—C7115.6 (2)C1—C7—H7B108.3
C2—C1—C8110.8 (2)H7A—C7—H7B107.4
C7—C1—C8109.7 (2)C1—C8—H8A109.5
C2—C1—N1107.6 (2)C1—C8—H8B109.5
C7—C1—N1107.6 (2)H8A—C8—H8B109.5
C8—C1—N1104.9 (2)C1—C8—H8C109.5
N3—C2—C1116.3 (2)H8A—C8—H8C109.5
N3—C2—H2A108.2H8B—C8—H8C109.5
C1—C2—H2A108.2N1—O2—Cu185.76 (15)
N3—C2—H2B108.2N3—C11—H11A109.5
C1—C2—H2B108.2N3—C11—H11B109.5
H2A—C2—H2B107.4H11A—C11—H11B109.5
C11—N3—C4108.3 (2)N3—C11—H11C109.5
C11—N3—C2108.6 (2)H11A—C11—H11C109.5
C4—N3—C2109.0 (2)H11B—C11—H11C109.5
C11—N3—Cu1117.18 (17)N6—C12—H12A109.5
C4—N3—Cu199.36 (15)N6—C12—H12B109.5
C2—N3—Cu1113.78 (15)H12A—C12—H12B109.5
N3—C4—C5109.8 (2)N6—C12—H12C109.5
N3—C4—H4A109.7H12A—C12—H12C109.5
C5—C4—H4A109.7H12B—C12—H12C109.5

Symmetry codes: (i) −x+1, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2138).

References

  • Astner, J., Weitzer, M., Foxon, S. P., Schindler, S., Heinemann, F. W., Mukherjee, J., Gupta, R., Mahadevan, V. & Mukherjee, R. (2008). Inorg. Chim. Acta, 361, 279–292.
  • Belousoff, M. J., Duriska, M. B., Graham, B., Batten, S. R., Moubaraki, B., Murray, K. S. & Spiccia, L. (2006). Inorg. Chem.45, 3746–3755. [PubMed]
  • Bruker (2006). APEX2, COSMO, BIS, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Deal, K. A. & Burstyn, J. N. (1996). Inorg. Chem.35, 2792–2798.
  • Fry, F. H., Fischmann, A. J., Belousoff, M. J., Spiccia, L. & Brgger, J. (2005). Inorg. Chem.44, 941–950. [PubMed]
  • Ge, S., Bambirra, S., Meetsma, A. & Hessen, B. (2006). Chem. Commun. pp. 3320–3322. [PubMed]
  • Hegg, E. L. & Burstyn, J. N. (1998). Coord. Chem. Rev.173, 133–165.
  • Peralta, R. A., Neves, A., Bortoluzzi, A. J., Casellato, A., Anjos, A., Greatti, A., Xavier, F. R. & Szpoganicz, B. (2005). Inorg. Chem.44, 7690–7692. [PubMed]
  • Rodriguez, M., Llobet, A., Corbella, M., Martell, A. E. & Reibenspies, J. (1999). Inorg. Chem.38, 2328–2334.
  • Romba, J., Kuppert, D., Morgenstern, B., Neis, C., Steinhauser, S., Weyhermüller, T. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 314–328.
  • Schwindinger, W. F., Fawcett, T. G., Lalancette, R. A., Potenza, J. A. & Schugar, H. J. (1980). Inorg. Chem.19, 1379–1381.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Steed, J. W., Goeta, A. E., Lipkowski, J., Swierczynski, D., Panteleonc, V. & Handa, S. (2007). Chem. Commun. pp. 813–815. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography