PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): m172.
Published online 2009 January 10. doi:  10.1107/S1600536809000683
PMCID: PMC2968151

Tetra­aqua­bis(N-phenyl­sulfonyl-l-leucinato)cadmium(II) dihydrate

Abstract

In the title compound, [Cd(C12H16NO4S)2(H2O)]·2H2O, the Cd atom is located on a twofold rotation axis and a distorted CdO8 dodeca­hedral arrangement arises from the coordination of the two chelating ligands and four water mol­ecules. A network of N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds help to establish the crystal packing. Both coordinated and uncoordinated water molecules are disordered with an approximate half-occupation for each of the water molecules.

Related literature

For background to the design and synthesis of metal complexes, see: Zhang et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0m172-scheme1.jpg

Experimental

Crystal data

  • [Cd(C12H16NO4S)2(H2O)]·2H2O
  • M r = 725.10
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0m172-efi1.jpg
  • a = 17.733 (2) Å
  • b = 17.2930 (19) Å
  • c = 5.6051 (11) Å
  • V = 1718.9 (4) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.81 mm−1
  • T = 298 (2) K
  • 0.50 × 0.40 × 0.36 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.687, T max = 0.759
  • 9050 measured reflections
  • 3033 independent reflections
  • 1954 reflections with I > 2σ(I)
  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.214
  • S = 1.03
  • 3033 reflections
  • 207 parameters
  • H-atom parameters constrained
  • Δρmax = 0.70 e Å−3
  • Δρmin = −0.56 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1247 Friedel pairs
  • Flack parameter: 0.00 (8)

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809000683/at2702sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000683/at2702Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and Weifang University for research grants.

supplementary crystallographic information

Comment

During the last decade, the design and synthesis of metal complexes have attracted considerable attention due to their potential uses as biological activities (Zhang et al., 2007). The synthesis and structure of the title compound (I) is reported.

In the title compound, the Cd atom is located on an inversion center. Two O-bidentate ligands and four water molecules are attached to the cadmium atom, resulting in a distorted CdO8 triangluar dodecahedral arrangement (Fig. 1). The identical S1═O3 [1.407 (7) Å], S1═O4 [1.430 (8) Å] and C1═O2 [1.235 (13) Å] bonds lengths imply double-bond character. The dihedral angle between the two benzene ring mean planes (C7—C12 and C7A—C12A) is 58.2 °.

Two molecules of water complete the structure of (I) and a network of hydrogen bonds helps to establish the crystal packing (Table 1).

Experimental

1 mmol of cadmium chloride was added to a solution of 2-phenylsulfonyl chloride-L-leucine (2 mmol) in 10 ml of CH3OH/H2O (v/v 1:1). The mixture was continuously stirred for 4 h at refluxing temperature, evaporating some methanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 69%). Clear blocks of (I) were obtained by evaporation from a methanol solution after a week.

Refinement

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C,O).

Figures

Fig. 1.
The complex molecule, with 30% probabiility ellipsoids.

Crystal data

[Cd(C12H16NO4S)2(H2O)]·2H2OF(000) = 748
Mr = 725.10Dx = 1.401 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2267 reflections
a = 17.733 (2) Åθ = 2.3–19.6°
b = 17.2930 (19) ŵ = 0.81 mm1
c = 5.6051 (11) ÅT = 298 K
V = 1718.9 (4) Å3Block, colourless
Z = 20.50 × 0.40 × 0.36 mm

Data collection

Bruker SMART CCD area-detector diffractometer3033 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
graphiteRint = 0.051
[var phi] and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −21→19
Tmin = 0.687, Tmax = 0.759k = −18→20
9050 measured reflectionsl = −6→6

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.214w = 1/[σ2(Fo2) + (0.1333P)2 + 0.5509P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3033 reflectionsΔρmax = 0.70 e Å3
207 parametersΔρmin = −0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 1247 Freidel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.00 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cd10.50000.50000.05213 (18)0.0754 (4)
N10.3790 (4)0.7120 (5)0.5321 (16)0.067 (2)
H10.39920.67070.60570.081*
O10.4512 (4)0.5829 (4)0.3465 (14)0.079 (2)
O20.4394 (4)0.6239 (4)−0.0210 (14)0.077 (2)
O30.2573 (4)0.7608 (4)0.4174 (14)0.080 (2)
O40.2793 (4)0.7154 (5)0.8283 (13)0.085 (2)
O50.5451 (10)0.5261 (9)−0.333 (3)0.099 (5)0.50
H5E0.51630.5567−0.40870.119*0.50
H5F0.55170.4850−0.41280.119*0.50
O60.379 (2)0.446 (3)0.075 (15)0.110 (12)0.57 (13)
H6E0.37910.39770.09420.132*0.57 (13)
H6F0.37680.4554−0.07400.132*0.57 (13)
O6'0.396 (3)0.428 (3)0.191 (19)0.110 (16)0.43 (13)
H6'C0.39410.38210.13540.132*0.43 (13)
H6'B0.41700.42960.32700.132*0.43 (13)
O70.6587 (11)0.6808 (11)0.976 (4)0.128 (7)0.50
H7C0.67780.68800.83890.153*0.50
H7D0.68550.70541.07660.153*0.50
S10.29018 (13)0.70772 (14)0.5767 (5)0.0649 (6)
C10.4350 (6)0.6338 (6)0.197 (2)0.068 (3)
C20.4090 (6)0.7135 (6)0.2887 (19)0.069 (3)
H20.37140.73540.17980.083*
C30.4805 (6)0.7630 (7)0.285 (2)0.085 (3)
H3A0.51390.74410.40900.102*
H3B0.50560.75460.13360.102*
C40.4717 (8)0.8475 (8)0.319 (3)0.101 (4)
H40.44740.86210.46900.122*
C50.4321 (9)0.8787 (9)0.095 (4)0.129 (6)
H5A0.44400.8463−0.03920.194*
H5B0.44910.93050.06360.194*
H5C0.37860.87890.11990.194*
C60.5520 (11)0.8810 (9)0.286 (4)0.151 (8)
H6A0.58400.86290.41170.227*
H6B0.54970.93650.28970.227*
H6C0.57190.86460.13460.227*
C70.2568 (6)0.6164 (6)0.498 (2)0.074 (3)
C80.2721 (7)0.5536 (7)0.651 (2)0.083 (3)
H80.29950.56160.79050.099*
C90.2469 (7)0.4809 (7)0.596 (3)0.093 (4)
H90.25710.43980.69770.111*
C100.2057 (8)0.4681 (8)0.384 (3)0.094 (4)
H100.18820.41890.34620.113*
C110.1923 (7)0.5283 (7)0.239 (3)0.093 (4)
H110.16500.52020.10000.112*
C120.2186 (7)0.6048 (7)0.292 (2)0.083 (3)
H120.20960.64540.18710.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.0923 (8)0.0840 (7)0.0497 (6)0.0321 (6)0.0000.000
N10.075 (5)0.069 (4)0.058 (5)0.015 (4)−0.007 (4)−0.005 (4)
O10.095 (5)0.077 (4)0.064 (5)0.024 (4)−0.006 (4)0.004 (4)
O20.090 (5)0.079 (4)0.062 (5)0.026 (4)0.002 (4)0.000 (4)
O30.084 (4)0.080 (5)0.076 (5)0.030 (4)−0.004 (4)0.003 (4)
O40.099 (5)0.102 (5)0.056 (4)0.030 (5)0.010 (4)−0.010 (4)
O50.149 (14)0.083 (11)0.066 (10)0.054 (9)0.002 (9)0.006 (8)
O60.115 (16)0.120 (16)0.09 (3)0.017 (12)−0.012 (19)0.005 (18)
O6'0.11 (2)0.12 (2)0.09 (3)0.017 (17)−0.01 (2)0.00 (3)
O70.133 (15)0.133 (14)0.117 (17)−0.040 (12)0.014 (13)−0.052 (14)
S10.0736 (14)0.0714 (14)0.0498 (13)0.0225 (12)−0.0001 (13)−0.0047 (13)
C10.074 (6)0.071 (6)0.058 (7)0.015 (5)−0.006 (5)0.008 (6)
C20.077 (7)0.071 (6)0.060 (6)0.009 (5)−0.004 (5)0.003 (5)
C30.087 (8)0.088 (8)0.080 (8)0.003 (6)−0.008 (6)0.006 (6)
C40.102 (9)0.103 (10)0.099 (10)−0.002 (7)−0.018 (8)0.005 (9)
C50.142 (13)0.119 (11)0.126 (15)−0.002 (9)−0.027 (13)0.022 (12)
C60.147 (15)0.137 (14)0.17 (2)−0.037 (12)−0.029 (15)0.013 (15)
C70.083 (6)0.080 (6)0.060 (8)0.008 (5)−0.001 (5)0.003 (5)
C80.095 (8)0.085 (8)0.069 (8)0.004 (6)−0.008 (6)0.002 (6)
C90.104 (8)0.089 (9)0.085 (9)0.002 (6)−0.004 (7)0.011 (7)
C100.106 (9)0.091 (8)0.086 (10)−0.008 (7)0.003 (8)0.003 (8)
C110.105 (9)0.099 (10)0.075 (9)−0.006 (7)−0.008 (7)0.000 (7)
C120.096 (8)0.086 (8)0.067 (8)−0.002 (6)−0.003 (7)0.003 (6)

Geometric parameters (Å, °)

Cd1—O5i2.343 (16)S1—C71.742 (12)
Cd1—O52.343 (16)C1—C21.543 (15)
Cd1—O62.35 (3)C2—C31.531 (15)
Cd1—O6i2.35 (3)C2—H20.9800
Cd1—O1i2.351 (7)C3—C41.481 (17)
Cd1—O12.351 (7)C3—H3A0.9700
Cd1—O6'i2.36 (4)C3—H3B0.9700
Cd1—O6'2.36 (4)C4—C51.54 (2)
Cd1—O2i2.433 (7)C4—C61.55 (2)
Cd1—O22.433 (7)C4—H40.9800
Cd1—C1i2.709 (11)C5—H5A0.9600
N1—C21.464 (14)C5—H5B0.9600
N1—S11.597 (8)C5—H5C0.9600
N1—H10.8999C6—H6A0.9600
O1—C11.249 (12)C6—H6B0.9600
O2—C11.235 (13)C6—H6C0.9600
O3—S11.407 (7)C7—C121.356 (16)
O4—S11.430 (8)C7—C81.409 (16)
O5—H5E0.8500C8—C91.371 (17)
O5—H5F0.8500C8—H80.9300
O6—H6E0.8500C9—C101.408 (19)
O6—H6F0.8501C9—H90.9300
O6—H6'C1.1951C10—C111.343 (16)
O6'—H6E0.8094C10—H100.9300
O6'—H6'C0.8500C11—C121.432 (17)
O6'—H6'B0.8501C11—H110.9300
O7—H7C0.8500C12—H120.9300
O7—H7D0.8499
O5i—Cd1—O546.1 (9)H6E—O6—H6'C15.9
O5i—Cd1—O670 (2)H6F—O6—H6'C117.1
O5—Cd1—O6116 (2)Cd1—O6'—H6E114.2
O5i—Cd1—O6i116 (2)Cd1—O6'—H6'C113.8
O5—Cd1—O6i70 (2)H6E—O6'—H6'C30.9
O6—Cd1—O6i174 (4)Cd1—O6'—H6'B86.3
O5i—Cd1—O1i130.8 (4)H6E—O6'—H6'B141.9
O5—Cd1—O1i129.6 (4)H6'C—O6'—H6'B112.3
O6—Cd1—O1i93 (2)H7C—O7—H7D107.7
O6i—Cd1—O1i82.2 (9)O3—S1—O4120.6 (5)
O5i—Cd1—O1129.6 (4)O3—S1—N1106.2 (5)
O5—Cd1—O1130.8 (4)O4—S1—N1106.4 (5)
O6—Cd1—O182.2 (9)O3—S1—C7106.9 (5)
O6i—Cd1—O193 (2)O4—S1—C7106.7 (5)
O1i—Cd1—O190.8 (4)N1—S1—C7109.7 (5)
O5i—Cd1—O6'i132 (3)O2—C1—O1123.5 (10)
O5—Cd1—O6'i86 (3)O2—C1—C2118.2 (10)
O6—Cd1—O6'i155 (4)O1—C1—C2118.3 (9)
O6i—Cd1—O6'i19.3 (9)N1—C2—C3108.8 (9)
O1i—Cd1—O6'i78.7 (11)N1—C2—C1113.8 (9)
O1—Cd1—O6'i75 (3)C3—C2—C1104.4 (9)
O5i—Cd1—O6'86 (3)N1—C2—H2109.9
O5—Cd1—O6'132 (3)C3—C2—H2109.9
O6—Cd1—O6'19.3 (9)C1—C2—H2109.9
O6i—Cd1—O6'155 (4)C4—C3—C2117.6 (10)
O1i—Cd1—O6'75 (3)C4—C3—H3A107.9
O1—Cd1—O6'78.7 (11)C2—C3—H3A107.9
O6'i—Cd1—O6'142 (5)C4—C3—H3B107.9
O5i—Cd1—O2i80.0 (4)C2—C3—H3B107.9
O5—Cd1—O2i82.2 (4)H3A—C3—H3B107.2
O6—Cd1—O2i93.9 (10)C3—C4—C5107.0 (13)
O6i—Cd1—O2i87.2 (16)C3—C4—C6104.9 (12)
O1i—Cd1—O2i54.4 (3)C5—C4—C6101.0 (15)
O1—Cd1—O2i144.9 (3)C3—C4—H4114.2
O6'i—Cd1—O2i100 (2)C5—C4—H4114.2
O6'—Cd1—O2i86.3 (13)C6—C4—H4114.2
O5i—Cd1—O282.2 (4)C4—C5—H5A109.5
O5—Cd1—O280.0 (4)C4—C5—H5B109.5
O6—Cd1—O287.2 (16)H5A—C5—H5B109.5
O6i—Cd1—O293.9 (10)C4—C5—H5C109.5
O1i—Cd1—O2144.9 (3)H5A—C5—H5C109.5
O1—Cd1—O254.4 (3)H5B—C5—H5C109.5
O6'i—Cd1—O286.3 (13)C4—C6—H6A109.5
O6'—Cd1—O2100 (2)C4—C6—H6B109.5
O2i—Cd1—O2160.6 (4)H6A—C6—H6B109.5
O5i—Cd1—C1i104.8 (4)C4—C6—H6C109.5
O5—Cd1—C1i107.1 (4)H6A—C6—H6C109.5
O6—Cd1—C1i92.2 (18)H6B—C6—H6C109.5
O6i—Cd1—C1i86.0 (9)C12—C7—C8120.0 (11)
O1i—Cd1—C1i27.4 (3)C12—C7—S1121.3 (9)
O1—Cd1—C1i117.9 (3)C8—C7—S1118.7 (9)
O6'i—Cd1—C1i91.2 (11)C9—C8—C7120.4 (12)
O6'—Cd1—C1i77 (2)C9—C8—H8119.8
O2i—Cd1—C1i27.1 (3)C7—C8—H8119.8
O2—Cd1—C1i172.3 (3)C8—C9—C10120.3 (12)
C2—N1—S1120.3 (7)C8—C9—H9119.8
C2—N1—H1107.3C10—C9—H9119.8
S1—N1—H1106.5C11—C10—C9118.5 (12)
C1—O1—Cd192.5 (6)C11—C10—H10120.7
C1—O2—Cd189.0 (6)C9—C10—H10120.7
Cd1—O5—H5E112.2C10—C11—C12122.3 (12)
Cd1—O5—H5F111.9C10—C11—H11118.8
H5E—O5—H5F109.8C12—C11—H11118.8
Cd1—O6—H6F84.7C7—C12—C11118.4 (12)
H6E—O6—H6F107.7C7—C12—H12120.8
Cd1—O6—H6'C99.8C11—C12—H12120.8
O5i—Cd1—O1—C1−40.1 (10)Cd1—O1—C1—C2−171.1 (9)
O5—Cd1—O1—C121.6 (9)S1—N1—C2—C3146.7 (7)
O6—Cd1—O1—C1−96 (2)S1—N1—C2—C1−97.4 (9)
O6i—Cd1—O1—C188.2 (11)O2—C1—C2—N1158.6 (10)
O1i—Cd1—O1—C1170.4 (8)O1—C1—C2—N1−22.2 (14)
O6'i—Cd1—O1—C192.4 (13)O2—C1—C2—C3−82.9 (13)
O6'—Cd1—O1—C1−116 (3)O1—C1—C2—C396.3 (12)
O2i—Cd1—O1—C1178.1 (7)N1—C2—C3—C4−69.9 (14)
O2—Cd1—O1—C1−4.2 (7)C1—C2—C3—C4168.2 (12)
C1i—Cd1—O1—C1175.4 (4)C2—C3—C4—C5−68.8 (16)
O5i—Cd1—O2—C1157.0 (9)C2—C3—C4—C6−175.5 (13)
O5—Cd1—O2—C1−156.3 (9)O3—S1—C7—C1211.0 (11)
O6—Cd1—O2—C187 (2)O4—S1—C7—C12141.3 (10)
O6i—Cd1—O2—C1−87 (2)N1—S1—C7—C12−103.7 (10)
O1i—Cd1—O2—C1−5.3 (10)O3—S1—C7—C8−170.8 (9)
O1—Cd1—O2—C14.2 (7)O4—S1—C7—C8−40.5 (10)
O6'i—Cd1—O2—C1−69 (3)N1—S1—C7—C874.5 (10)
O6'—Cd1—O2—C172 (3)C12—C7—C8—C9−1.7 (19)
O2i—Cd1—O2—C1−179.7 (7)S1—C7—C8—C9−179.9 (10)
C1i—Cd1—O2—C11(3)C7—C8—C9—C100(2)
C2—N1—S1—O3−44.3 (9)C8—C9—C10—C110.4 (19)
C2—N1—S1—O4−174.0 (8)C9—C10—C11—C120(2)
C2—N1—S1—C770.9 (9)C8—C7—C12—C112.2 (18)
Cd1—O2—C1—O1−7.7 (12)S1—C7—C12—C11−179.6 (9)
Cd1—O2—C1—C2171.4 (9)C10—C11—C12—C7−1.5 (19)
Cd1—O1—C1—O28.0 (13)

Symmetry codes: (i) −x+1, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O10.902.292.776 (11)113
N1—H1···O2ii0.902.353.121 (12)143
O5—H5E···O1iii0.851.852.639 (19)154
O5—H5F···O1iv0.851.792.605 (18)161
O7—H7C···O3v0.852.202.99 (2)155
O7—H7D···O4vi0.852.223.00 (2)152
C2—H2···O30.982.462.903 (13)107
C2—H2···O4iii0.982.583.457 (13)149
C12—H12···O30.932.522.871 (14)102

Symmetry codes: (ii) x, y, z+1; (iii) x, y, z−1; (iv) −x+1, −y+1, z−1; (v) x+1/2, −y+3/2, −z+1; (vi) x+1/2, −y+3/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2702).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, X. M., Zhou, Y. Z., Tu, S. J., Xiao, L. M. & Zhu, H. J. (2007). Chin. J. Inorg. Chem.23, 1700–1704.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography