PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o212.
Published online 2009 January 8. doi:  10.1107/S160053680804350X
PMCID: PMC2968150

2,2′-Dimethyl-4,4′-(sulfonyldi-p-phenyl­ene)dibut-3-yn-2-ol dihydrate

Abstract

The asymmetric unit of the title compound, C22H22O4S·2H2O, contains one quarter of the organic mol­ecule and one half water mol­ecule, the site symmetries of the S atom and the water O atom being mm2 and m, respectively. The dihedral angle between the benzene rings is 76.27 (11)°. In the crystal structure, inter­molecular O—H(...)O hydrogen bonds link the mol­ecules into chains running parallel to the a axis.

Related literature

For the properties and synthesis of thermosetting acetyl­ene-terminated resins, see: Lu & Hamerton (2002 [triangle]). For the applications of the title compound, see: Hanson & Millburn (1984 [triangle]); Poon et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o212-scheme1.jpg

Experimental

Crystal data

  • C22H22O4S·2H2O
  • M r = 418.50
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o212-efi1.jpg
  • a = 19.751 (3) Å
  • b = 10.904 (3) Å
  • c = 5.092 (2) Å
  • V = 1096.5 (7) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.18 mm−1
  • T = 292 (2) K
  • 0.46 × 0.20 × 0.16 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: spherical (WinGX; Farrugia, 1999 [triangle]) T min = 0.921, T max = 0.972
  • 1211 measured reflections
  • 888 independent reflections
  • 756 reflections with I > 2σ(I)
  • R int = 0.014
  • 3 standard reflections every 50 reflections intensity decay: 1.2%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053
  • wR(F 2) = 0.142
  • S = 1.09
  • 888 reflections
  • 81 parameters
  • 3 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.40 e Å−3
  • Absolute structure: Flack (1983 [triangle]); 284 Friedel pairs
  • Flack parameter: −0.1 (2)

Data collection: DIFRAC (Gabe & White, 1993 [triangle]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680804350X/rz2282sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053680804350X/rz2282Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Undergraduates’ Innovative Experiment Project of Sichuan University and the Experimental Technical Project of Sichuan University (07–54) for financial support, and thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

supplementary crystallographic information

Comment

Acetylene-terminated resins are commercially employed in composite materials, in particular where high strength, light weight materials capable of withstanding high temperatures are required (Lu & Hamerton, 2002). The title compound is an important intermediate for the preparation of these acetylene-terminated compounds (Hanson & Millburn, 1984) and a series of luminescent and thermally stable materials (Poon et al., 2006). We report here the synthesis and crystal structure of the title compound (Fig. 1).

The asymmetric unit of the title compound contains one fourth of the organic molecule and one half water molecule, the site symmetries of the S1 sulphur atom and the O3W water oxygen atom being mm2 and m, respectively. The dihedral angles between the benzene rings is 103.73 (11)°. The displacement of the C7 atom of the 2-hydroxy-2-methyl-4-but-3-ynyl substituent from the plane of the aromatic ring is -0.1870 (14) Å. In the crystal structure, the water molecules and the hydroxy groups are involved in the formation of intermolecular O—H···O hydrogen bonds (Table 1) forming chains running parallel to the a axis.

Experimental

1,1'-Sulfonylbis(4-iodobenzene) (10.00 g, 21.28 mmol), triethylamine (100 ml), PdCl2(PPh3)2 (0.02 g, 0.03 mmol), PPh3 (0.04 g, 0.15 mmol), 2-methylbut-3-yn-2-ol (4.29 g, 51.10 mmol) and CuI (0.04 g, 0.21 mmol) were added to a 250 ml three-ecked flask, and the mixture heated to reflux for 10 h. After completion of the reaction, the mixture was filtered and the filtrate was evaporated under reduced pressure. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol/ water solution (10:1 v/v) (6.90 g, 85% yield; m.p. 435–437 K).

Refinement

The hydroxy H atom was located in a difference Fourier map and refined isotropically with the O—H distance restrained to 0.82Å. The water H atom was located in a difference Fourier map and refined as riding. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq (C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level [symmetry codes: (i) = x, 1-y, z; (ii) = 1-x, 1-y, z; (iii) = 1-x, y, z].

Crystal data

C22H22O4S·2H2OF(000) = 444
Mr = 418.50Dx = 1.267 Mg m3
Orthorhombic, Amm2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2Cell parameters from 19 reflections
a = 19.751 (3) Åθ = 4.9–7.6°
b = 10.904 (3) ŵ = 0.18 mm1
c = 5.092 (2) ÅT = 292 K
V = 1096.5 (7) Å3Block, colourless
Z = 20.46 × 0.20 × 0.16 mm

Data collection

Enraf–Nonius CAD-4 diffractometer756 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
graphiteθmax = 25.5°, θmin = 1.0°
ω/2θ scansh = −23→23
Absorption correction: for a sphere (WinGX; Farrugia, 1999)k = −13→13
Tmin = 0.921, Tmax = 0.972l = −6→3
1211 measured reflections3 standard reflections every 50 reflections
888 independent reflections intensity decay: 1.2%

Refinement

Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.053w = 1/[σ2(Fo2) + (0.0747P)2 + 1.0802P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.142(Δ/σ)max < 0.001
S = 1.09Δρmax = 0.52 e Å3
888 reflectionsΔρmin = −0.40 e Å3
81 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.011 (3)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983); 284 Friedel pairs
Secondary atom site location: difference Fourier mapFlack parameter: −0.1 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.50000.50000.5447 (4)0.0400 (6)
O10.50000.6154 (4)0.6856 (9)0.0545 (12)
O20.0928 (2)0.5000−0.3050 (9)0.0541 (12)
H2O0.0592 (5)0.5000−0.398 (4)0.065 (8)*
C10.4296 (2)0.50000.3319 (11)0.0372 (13)
C20.40288 (19)0.3902 (3)0.2490 (10)0.0452 (10)
H20.42180.31670.30520.054*
C30.34760 (18)0.3895 (4)0.0814 (10)0.0501 (11)
H30.32900.31560.02550.060*
C40.3202 (2)0.5000−0.0022 (12)0.0426 (15)
C50.2615 (3)0.5000−0.1766 (12)0.0445 (14)
C60.2125 (2)0.5000−0.3109 (12)0.0401 (13)
C70.1511 (2)0.5000−0.4712 (13)0.0371 (12)
C80.1503 (2)0.3873 (3)−0.6405 (8)0.0519 (11)
H8A0.13440.3188−0.53960.078*
H8B0.19530.3708−0.70240.078*
H8C0.12080.4003−0.78770.078*
O3W0.0000 (3)0.3082 (3)−0.2418 (8)0.0559 (12)*
H1W−0.03320.3467−0.24480.078 (16)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0347 (9)0.0578 (12)0.0276 (11)0.0000.0000.000
O10.053 (2)0.071 (3)0.040 (3)0.0000.000−0.022 (2)
O20.0384 (18)0.080 (3)0.044 (3)0.0000.001 (2)0.000
C10.030 (2)0.052 (3)0.030 (3)0.000−0.002 (2)0.000
C20.0437 (18)0.044 (2)0.048 (3)0.0055 (17)−0.0050 (19)0.003 (2)
C30.0418 (19)0.055 (2)0.053 (3)−0.0022 (16)−0.010 (2)−0.010 (2)
C40.029 (2)0.064 (3)0.035 (4)0.0000.004 (2)0.000
C50.040 (3)0.063 (3)0.031 (3)0.0000.003 (3)0.000
C60.034 (3)0.050 (3)0.037 (3)0.0000.004 (3)0.000
C70.037 (2)0.045 (3)0.029 (3)0.000−0.002 (3)0.000
C80.066 (2)0.049 (2)0.041 (3)−0.0030 (19)−0.002 (2)0.000 (2)

Geometric parameters (Å, °)

S1—O11.448 (4)C3—H30.9300
S1—O1i1.448 (4)C4—C3ii1.388 (5)
S1—C11.763 (5)C4—C51.461 (7)
S1—C1i1.763 (5)C5—C61.185 (7)
O2—C71.428 (7)C6—C71.462 (7)
O2—H2O0.817 (10)C7—C81.501 (5)
C1—C2ii1.375 (5)C7—C8ii1.501 (5)
C1—C21.375 (5)C8—H8A0.9600
C2—C31.386 (5)C8—H8B0.9600
C2—H20.9300C8—H8C0.9600
C3—C41.388 (5)O3W—H1W0.7779
O1—S1—O1i120.6 (4)C3ii—C4—C5119.7 (3)
O1—S1—C1107.72 (13)C3—C4—C5119.7 (3)
O1i—S1—C1107.72 (13)C6—C5—C4177.8 (6)
O1—S1—C1i107.72 (13)C5—C6—C7178.7 (6)
O1i—S1—C1i107.72 (13)O2—C7—C6109.7 (5)
C1—S1—C1i104.1 (4)O2—C7—C8109.4 (3)
C7—O2—H2O108.2 (13)C6—C7—C8109.2 (3)
C2ii—C1—C2121.1 (5)O2—C7—C8ii109.4 (3)
C2ii—C1—S1119.4 (3)C6—C7—C8ii109.2 (3)
C2—C1—S1119.4 (3)C8—C7—C8ii109.9 (5)
C1—C2—C3119.8 (4)C7—C8—H8A109.5
C1—C2—H2120.1C7—C8—H8B109.5
C3—C2—H2120.1H8A—C8—H8B109.5
C2—C3—C4119.4 (4)C7—C8—H8C109.5
C2—C3—H3120.3H8A—C8—H8C109.5
C4—C3—H3120.3H8B—C8—H8C109.5
C3ii—C4—C3120.5 (5)
O1—S1—C1—C2ii24.6 (5)C2—C3—C4—C3ii−0.2 (9)
O1i—S1—C1—C2ii156.2 (4)C2—C3—C4—C5−179.3 (5)
C1i—S1—C1—C2ii−89.6 (4)C3ii—C4—C5—C6−89.5 (5)
O1—S1—C1—C2−156.2 (4)C3—C4—C5—C689.5 (5)
O1i—S1—C1—C2−24.6 (5)C4—C5—C6—C70.00 (3)
C1i—S1—C1—C289.6 (4)C5—C6—C7—O20.00 (2)
C2ii—C1—C2—C3−0.7 (8)C5—C6—C7—C8−119.9 (3)
S1—C1—C2—C3−179.9 (4)C5—C6—C7—C8ii119.9 (3)
C1—C2—C3—C40.5 (7)

Symmetry codes: (i) −x+1, −y+1, z; (ii) x, −y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O3W—H1W···O2iii0.782.072.800 (6)157

Symmetry codes: (iii) −x, −y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2282).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Gabe, E. J. & White, P. S. (1993). DIFRAC Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.
  • Hanson, H. T. & Millburn, N. J. (1984). US Patent 4 439 590.
  • Lu, S. Y. & Hamerton, I. (2002). Prog. Polym. Sci.27, 1661–1712.
  • Poon, S. Y., Wong, W. Y., Cheah, K. W. & Shi, J. X. (2006). Chem. Eur. J.12, 2550–2563. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography