PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o240.
Published online 2009 January 8. doi:  10.1107/S1600536809000063
PMCID: PMC2968148

1-(3-Chloro­benzo­yl)-3-(2,3-dimethyl­phen­yl)thio­urea

Abstract

The title mol­ecule, C16H15ClN2OS, exists in the solid state in its thione form with typical thio­urea C—S and C—O bonds lengths, as well as shortened C—N bonds. An intra­molecular N—H(...)O hydrogen bond stabilizes the mol­ecular conformation and inter­molecular N—H(...)S hydrogen bonds link the mol­ecules into centrosymmetric dimers. The dihedral angle between the aromatic rings is 50.18 (5)°.

Related literature

For related compounds, see: Khawar Rauf et al. (2006a [triangle],b [triangle],c [triangle],d [triangle]). For reference bond-length data, see: Allen (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o240-scheme1.jpg

Experimental

Crystal data

  • C16H15ClN2OS
  • M r = 318.81
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o240-efi1.jpg
  • a = 8.1315 (9) Å
  • b = 9.3906 (12) Å
  • c = 10.5310 (12) Å
  • α = 93.296 (8)°
  • β = 92.623 (8)°
  • γ = 102.579 (9)°
  • V = 782.14 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 173 (2) K
  • 0.46 × 0.42 × 0.41 mm

Data collection

  • Stoe IPDS II two-circle diffractometer
  • Absorption correction: multi-scan (MULABS; Spek, 2003 [triangle]; Blessing, 1995 [triangle]) T min = 0.846, T max = 0.861
  • 8257 measured reflections
  • 3066 independent reflections
  • 2846 reflections with I > 2σ(I)
  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.085
  • S = 1.04
  • 3066 reflections
  • 201 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.33 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001 [triangle]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809000063/bv2114sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809000063/bv2114Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MKR is grateful to the HEC, Pakistan, for financial support for a PhD programme under scholarship No. ILC-0363104.

supplementary crystallographic information

Comment

The background to this study has been set out in our previous work on the structural chemistry of N,N'-disubstituted thioureas (Khawar Rauf et al., 2006a,b,c,d). Herein, as a continuation of these studies, the structure of the title compound (I) is described. A depiction of the molecule is given in Fig. 1. Bond lengths and angles, see the table of selected geometric parameters, can be regarded as typical for N,N'-disubstituted thiourea compounds as found in the Cambridge Structural Database v5.28 (Allen, 2002; Khawar Rauf et al., 2006a).The molecule exists in the thione form with typical thiourea C—S and C—O bonds, as well as shortened C—N bond lengths. The thiocarbonyl and carbonyl groups are almost coplanar. The dihedral angle between the aromatic rings is 50.18 (5)°. An intramolecular N—H···O hydrogen bond is present (Table 2), forming a six-membered ring commonly observed in this class of compounds (Khawar Rauf et al., 2006d). Intermolecular N—H···S hydrogen bonds link the molecules to form centrosymmetric dimers.

Experimental

Freshly prepared 3-chlorobenzoyl isothiocyanate (2.0 g, 10 mmol) was stirred in acetone (40 ml) for 20 min. Neat 2,3-dimethylaniline (1.62 g, 10 mmol) was then added and the resulting mixture was stirred for 1.5 h. The reaction mixture was then poured into acidified (pH 4) water and stirred well. The solid product was separated and washed with deionized water and purified by recrystallization from methanol–1,1-dichloromethane (1:10 v/v) to give fine crystals of (I), with an overall yield of 90%. Full spectroscopic and physical characterization will be reported elsewhere.

Refinement

H atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with C—H = 0.95 Å Uiso(H) = 1.2Ueq(C) or C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C), respectively, for aromatic and methyl C atoms. The H atoms bonded to N were freely refined.

Figures

Fig. 1.
Molecular structure of (I) showing atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Packing diagram. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H15ClN2OSZ = 2
Mr = 318.81F(000) = 332
Triclinic, P1Dx = 1.354 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1315 (9) ÅCell parameters from 7706 reflections
b = 9.3906 (12) Åθ = 3.7–26.1°
c = 10.5310 (12) ŵ = 0.38 mm1
α = 93.296 (8)°T = 173 K
β = 92.623 (8)°Block, colourless
γ = 102.579 (9)°0.46 × 0.42 × 0.41 mm
V = 782.14 (16) Å3

Data collection

Stoe IPDS II two-circle diffractometer3066 independent reflections
Radiation source: fine-focus sealed tube2846 reflections with I > 2σ(I)
graphiteRint = 0.037
ω scansθmax = 26.1°, θmin = 3.6°
Absorption correction: multi-scan (MULABS; Spek, 2003; Blessing, 1995)h = −10→10
Tmin = 0.846, Tmax = 0.861k = −10→11
8257 measured reflectionsl = −12→12

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.085w = 1/[σ2(Fo2) + (0.041P)2 + 0.3782P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3066 reflectionsΔρmax = 0.27 e Å3
201 parametersΔρmin = −0.32 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.097 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.23509 (5)0.60717 (4)0.59551 (4)0.02881 (14)
Cl1−0.24623 (5)−0.05881 (5)0.30214 (4)0.03438 (14)
O1−0.01441 (13)0.25159 (11)0.84778 (9)0.0258 (2)
N10.03004 (15)0.36655 (13)0.66166 (11)0.0201 (3)
H1−0.014 (2)0.3701 (19)0.5889 (18)0.025 (4)*
N20.24161 (15)0.47809 (13)0.81460 (11)0.0215 (3)
H20.192 (2)0.412 (2)0.8612 (19)0.034 (5)*
C1−0.04406 (17)0.25179 (15)0.73206 (13)0.0192 (3)
C20.16893 (17)0.48027 (14)0.69839 (13)0.0190 (3)
C11−0.16148 (16)0.12650 (14)0.65810 (13)0.0190 (3)
C12−0.15027 (17)0.09819 (15)0.52694 (13)0.0203 (3)
H12−0.07030.16120.48090.024*
C13−0.25894 (18)−0.02426 (15)0.46557 (14)0.0232 (3)
C14−0.37636 (19)−0.11864 (16)0.53128 (16)0.0280 (3)
H14−0.4495−0.20150.48770.034*
C15−0.38527 (18)−0.09009 (16)0.66142 (16)0.0280 (3)
H15−0.4650−0.15380.70710.034*
C16−0.27787 (18)0.03152 (16)0.72518 (14)0.0238 (3)
H16−0.28370.04990.81430.029*
C210.39206 (17)0.58278 (15)0.86417 (13)0.0194 (3)
C220.55031 (18)0.56849 (15)0.82648 (13)0.0213 (3)
C230.69413 (18)0.67134 (16)0.88045 (14)0.0240 (3)
C240.67324 (19)0.78059 (16)0.96980 (14)0.0255 (3)
H240.77010.84861.00660.031*
C250.5146 (2)0.79247 (17)1.00630 (14)0.0280 (3)
H250.50340.86791.06710.034*
C260.37181 (18)0.69272 (16)0.95296 (14)0.0243 (3)
H260.26240.69960.97680.029*
C270.5701 (2)0.44874 (18)0.73006 (16)0.0325 (4)
H27A0.46500.37360.71990.049*
H27B0.66250.40490.75980.049*
H27C0.59560.49010.64800.049*
C280.8687 (2)0.6643 (2)0.84115 (18)0.0412 (4)
H28A0.95130.74790.88230.062*
H28B0.87200.66710.74840.062*
H28C0.89610.57320.86720.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0257 (2)0.0279 (2)0.0257 (2)−0.00979 (15)−0.00909 (14)0.01144 (15)
Cl10.0333 (2)0.0398 (2)0.0276 (2)0.00868 (17)−0.00649 (16)−0.01303 (16)
O10.0274 (5)0.0271 (5)0.0184 (5)−0.0040 (4)−0.0013 (4)0.0031 (4)
N10.0201 (6)0.0193 (6)0.0172 (6)−0.0028 (4)−0.0054 (5)0.0021 (4)
N20.0202 (6)0.0212 (6)0.0188 (6)−0.0040 (5)−0.0040 (5)0.0030 (5)
C10.0175 (6)0.0190 (6)0.0199 (7)0.0015 (5)0.0001 (5)0.0016 (5)
C20.0171 (6)0.0180 (6)0.0201 (7)0.0008 (5)−0.0019 (5)0.0007 (5)
C110.0159 (6)0.0166 (6)0.0234 (7)0.0020 (5)−0.0026 (5)0.0019 (5)
C120.0179 (6)0.0182 (6)0.0238 (7)0.0026 (5)−0.0021 (5)0.0008 (5)
C130.0227 (7)0.0216 (7)0.0253 (7)0.0078 (5)−0.0061 (6)−0.0046 (6)
C140.0222 (7)0.0184 (7)0.0395 (9)−0.0007 (5)−0.0090 (6)−0.0025 (6)
C150.0215 (7)0.0211 (7)0.0384 (9)−0.0023 (6)−0.0023 (6)0.0078 (6)
C160.0215 (7)0.0226 (7)0.0255 (7)0.0009 (5)−0.0006 (6)0.0046 (6)
C210.0206 (7)0.0189 (6)0.0163 (6)0.0002 (5)−0.0050 (5)0.0023 (5)
C220.0236 (7)0.0211 (7)0.0184 (7)0.0041 (5)−0.0029 (5)0.0011 (5)
C230.0204 (7)0.0285 (7)0.0220 (7)0.0032 (6)−0.0033 (5)0.0038 (6)
C240.0235 (7)0.0249 (7)0.0240 (7)−0.0014 (6)−0.0084 (6)0.0014 (6)
C250.0321 (8)0.0252 (7)0.0245 (7)0.0056 (6)−0.0055 (6)−0.0073 (6)
C260.0206 (7)0.0286 (7)0.0229 (7)0.0053 (6)−0.0018 (5)−0.0021 (6)
C270.0316 (8)0.0343 (8)0.0311 (8)0.0092 (7)0.0010 (6)−0.0083 (7)
C280.0225 (8)0.0568 (11)0.0410 (10)0.0047 (7)−0.0002 (7)−0.0057 (8)

Geometric parameters (Å, °)

S1—C21.6751 (14)C16—H160.9500
Cl1—C131.7450 (15)C21—C261.394 (2)
O1—C11.2315 (17)C21—C221.395 (2)
N1—C11.3871 (18)C22—C231.417 (2)
N1—C21.3974 (17)C22—C271.511 (2)
N1—H10.836 (19)C23—C241.395 (2)
N2—C21.3377 (18)C23—C281.511 (2)
N2—C211.4472 (17)C24—C251.388 (2)
N2—H20.86 (2)C24—H240.9500
C1—C111.4966 (18)C25—C261.395 (2)
C11—C161.3986 (19)C25—H250.9500
C11—C121.402 (2)C26—H260.9500
C12—C131.3930 (19)C27—H27A0.9800
C12—H120.9500C27—H27B0.9800
C13—C141.392 (2)C27—H27C0.9800
C14—C151.390 (2)C28—H28A0.9800
C14—H140.9500C28—H28B0.9800
C15—C161.393 (2)C28—H28C0.9800
C15—H150.9500
C1—N1—C2127.82 (12)C26—C21—C22122.41 (13)
C1—N1—H1117.0 (12)C26—C21—N2117.43 (13)
C2—N1—H1115.2 (12)C22—C21—N2120.12 (12)
C2—N2—C21123.54 (12)C21—C22—C23117.98 (13)
C2—N2—H2116.1 (13)C21—C22—C27121.75 (13)
C21—N2—H2120.3 (13)C23—C22—C27120.27 (13)
O1—C1—N1122.49 (12)C24—C23—C22119.38 (13)
O1—C1—C11121.81 (12)C24—C23—C28120.03 (14)
N1—C1—C11115.70 (12)C22—C23—C28120.59 (14)
N2—C2—N1116.65 (12)C25—C24—C23121.69 (13)
N2—C2—S1124.50 (10)C25—C24—H24119.2
N1—C2—S1118.84 (10)C23—C24—H24119.2
C16—C11—C12120.14 (12)C24—C25—C26119.50 (14)
C16—C11—C1117.91 (12)C24—C25—H25120.2
C12—C11—C1121.84 (12)C26—C25—H25120.2
C13—C12—C11118.60 (13)C21—C26—C25119.04 (13)
C13—C12—H12120.7C21—C26—H26120.5
C11—C12—H12120.7C25—C26—H26120.5
C14—C13—C12121.68 (14)C22—C27—H27A109.5
C14—C13—Cl1119.67 (11)C22—C27—H27B109.5
C12—C13—Cl1118.64 (12)H27A—C27—H27B109.5
C15—C14—C13119.17 (13)C22—C27—H27C109.5
C15—C14—H14120.4H27A—C27—H27C109.5
C13—C14—H14120.4H27B—C27—H27C109.5
C14—C15—C16120.31 (14)C23—C28—H28A109.5
C14—C15—H15119.8C23—C28—H28B109.5
C16—C15—H15119.8H28A—C28—H28B109.5
C15—C16—C11120.08 (14)C23—C28—H28C109.5
C15—C16—H16120.0H28A—C28—H28C109.5
C11—C16—H16120.0H28B—C28—H28C109.5
C2—N1—C1—O114.4 (2)C12—C11—C16—C15−1.2 (2)
C2—N1—C1—C11−164.92 (13)C1—C11—C16—C15−177.41 (13)
C21—N2—C2—N1176.32 (12)C2—N2—C21—C26103.83 (16)
C21—N2—C2—S1−2.7 (2)C2—N2—C21—C22−78.45 (18)
C1—N1—C2—N21.0 (2)C26—C21—C22—C23−0.6 (2)
C1—N1—C2—S1−179.91 (11)N2—C21—C22—C23−178.24 (12)
O1—C1—C11—C1620.3 (2)C26—C21—C22—C27−179.96 (14)
N1—C1—C11—C16−160.43 (12)N2—C21—C22—C272.4 (2)
O1—C1—C11—C12−155.86 (13)C21—C22—C23—C241.0 (2)
N1—C1—C11—C1223.43 (19)C27—C22—C23—C24−179.67 (14)
C16—C11—C12—C131.1 (2)C21—C22—C23—C28−178.42 (14)
C1—C11—C12—C13177.14 (12)C27—C22—C23—C280.9 (2)
C11—C12—C13—C14−0.5 (2)C22—C23—C24—C25−0.8 (2)
C11—C12—C13—Cl1179.51 (10)C28—C23—C24—C25178.63 (15)
C12—C13—C14—C15−0.1 (2)C23—C24—C25—C260.2 (2)
Cl1—C13—C14—C15179.96 (11)C22—C21—C26—C250.0 (2)
C13—C14—C15—C160.0 (2)N2—C21—C26—C25177.71 (13)
C14—C15—C16—C110.7 (2)C24—C25—C26—C210.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···O10.86 (2)1.99 (2)2.6840 (16)137.7 (17)
N1—H1···S1i0.836 (19)2.636 (19)3.4376 (13)161.2 (15)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BV2114).

References

  • Allen, F. H. (2002). Acta Cryst. B58, 380–388. [PubMed]
  • Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [PubMed]
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006a). Acta Cryst. E62, o1859–o1860.
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006b). Acta Cryst. E62, o2221–o2222.
  • Khawar Rauf, M., Badshah, A. & Bolte, M. (2006c). Acta Cryst. E62, o2444–o2445.
  • Khawar Rauf, M., Badshah, A., Bolte, M. & Zaeem Akhtar, M. (2006d). Acta Cryst. E62, o1849–o1850.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Stoe & Cie (2001). X-AREA Stoe & Cie, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography