PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2009 February 1; 65(Pt 2): o217–o218.
Published online 2009 January 8. doi:  10.1107/S1600536808043547
PMCID: PMC2968146

(E)-4-[4-(Dimethyl­amino)styr­yl]-1-methyl­pyridinium 4-bromo­benzene­sulfonate1

Abstract

In the title compound, C16H19N2 +·C6H4BrO3S, the cation is nearly planar, with a dihedral angle of 3.19 (15)° between the pyridinium and the dimethylaminophenyl rings, and exists in the trans configuration. In the crystal packing, the cations and anions are linked into chains parallel to the c axis. These chains are stacked along the b axis. The crystal is stabilized by weak C—H(...)O and C—H(...)π inter­actions, and a π–π inter­action is also observed with a Cg(...)Cg distance of 3.5675 (19) Å.

Related literature

For background to NLO materials research, see: Chia et al. (1995 [triangle]); Sato et al. (1999 [triangle]); Nogi et al. (2000 [triangle]); Otero et al. (2002 [triangle]); Dittrich et al. (2003 [triangle]). For related structures, see, for example: Adachi et al. (1999 [triangle]); Chantrapromma et al. (2006 [triangle]; 2008 [triangle]); Jagannathan et al. (2007 [triangle]); Ogawa et al. (2008 [triangle]); Rahman et al. (2003 [triangle]); Yang et al. (2007 [triangle]). For comparison bond lengths, see Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-65-0o217-scheme1.jpg

Experimental

Crystal data

  • C16H19N2 +·C6H4BrO3S
  • M r = 475.39
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-65-0o217-efi1.jpg
  • a = 10.3712 (4) Å
  • b = 10.9937 (5) Å
  • c = 17.9027 (8) Å
  • β = 92.442 (3)°
  • V = 2039.37 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 2.15 mm−1
  • T = 100.0 (1) K
  • 0.49 × 0.31 × 0.11 mm

Data collection

  • Bruker SMART APEX2 CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.414, T max = 0.787
  • 13146 measured reflections
  • 6479 independent reflections
  • 4811 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.097
  • S = 1.02
  • 6479 reflections
  • 265 parameters
  • 2 restraints
  • H-atom parameters constrained
  • Δρmax = 1.01 e Å−3
  • Δρmin = −1.38 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1997 Friedel pairs
  • Flack parameter: 0.024 (7)

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536808043547/pk2136sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536808043547/pk2136Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Prince of Songkla University for a research grant and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Organic crystals with extensive conjugated π systems are attractive candidates for non-linear optic (NLO) studies because of their large NLO coefficients (Chia et al., 1995; Dittrich et al., 2003; Otero et al., 2002; Nogi et al., 2000; Sato et al., 1999). 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium tosylate (DAST) is one such promising NLO material (Adachi et al., 1999). Previous studies (Dittrich et al., 2003; Nogi et al., 2000; Sato et al., 1999) have shown that DAST and its analogues exhibit second-order non-linear optical properties. To investigate the effect of counter anion on the NLO properties of DAST, the title compound was prepared by changing the counter anion from 4-toluenesulfonate in DAST to 4-bromobenzenesulfonate. The title compound is found to crystallize with the non-centrosymmetric space group Cc and therefore has second order nonlinear optical properties.

The asymmetric unit of the title compound (Fig. 1), consists of the C16H19N2+ cation and C6H4BrO3S- anion. The cation exists in the E configuration with respect to the C6=C7 double bond [1.342 (5) Å] and the cation is nearly planar as indicated by the dihedral angle between the pyridinium and the dimethylaminophenyl rings 3.19 (15)°, and by the torsion angles C4–C5–C6–C7 = 1.0 (5)° and C6–C7–C8–C13 = 2.4 (5)°. Both methyl groups of the dimethylamino group are co-planar with the C8–C13 ring with the torsion angle C15—N2–C11–C10 of 2.3 (5)° and C16–N2–C11–C12 = 1.5 (5)°. The relative arrangement of cation and anion is shown by the angles between the mean plane of the 4-bromophenyl ring and those of the pyridinium and dimethylaminophenyl systems which are 74.81 (16)° and 77.99 (16)°, respectively. The bond lengths and angles are normal (Allen et al., 1987) and the cation bond lengths and angles are comparable with related structures (Chantrapromma et al., 2008).

In the crystal packing, all O atoms of sulfonate group are involved in weak C—H···O interactions (Table 1). The cations and anions are linked by weak C—H···O interactions into chains along the c axis and these chains are stacked along the b axis (Fig. 2). The crystal structure is further stabilized by a C—H···π interactions (Table 1). π–π interactions with the distance Cg1···Cg2 = 3.5675 (19) Å (symmetry code -1/2 + x, -1/2 + y, z and 1/2 + x, 1/2 + y, z) are observed; Cg1, Cg2 and Cg3 are the centroids of the N1/C1–C5, C8–C13 and C17–C22 rings.

Experimental

(E)-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide (compound A) was synthesized by mixing a solution (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.00 g, 8.5 mmol), 4-dimethylaminobenzaldehyde (1.27 g, 8.5 mmol) and piperidine (0.84 ml, 8.5 mmol) in hot methanol (50 ml). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The resultant solid was filtered off, washed with diethylether to give red solid of compound A (2.86 g, 92%), Mp. 536–537 K). Silver(I) p-bromobenzenesulfonate (compound B) was synthesized according to our previously reported procedure (Chantrapromma et al., 2006). The title compound was synthesized by mixing compound A (0.20 g, 0.5 mmol) in hot methanol (25 ml) and a solution of compound B (0.17 g, 0.5 mmol) in hot methanol (50 ml). The mixture immediately yielded a grey precipitate of silver iodide. After stirring the mixture for 30 min, the precipitate of silver iodide was removed and the resulting solution was evaporated yielding a red solid. Red plate-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature over several days, Mp. 536–537 K.

Refinement

All H atoms were placed in calculated positions with d(C—H) = 0.93 Å, Uiso=1.2Ueq(C) for aromatic and CH, 0.96 Å, Uiso = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.47 Å from Br1 and the deepest hole is located at 0.71 Å from Br1. A total of 1997 Friedel pairs were used to determine the absolute structure.

Figures

Fig. 1.
The asymmetric unit showing 50% probability displacement ellipsoids and the atom-numbering scheme.
Fig. 2.
Crystal packing viewed along the a axis. The weak C—H···O interactions are drawn as dashed lines.

Crystal data

C16H19N2+·C6H4BrO3SF(000) = 976
Mr = 475.39Dx = 1.548 Mg m3
Monoclinic, CcMelting point = 536–537 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 10.3712 (4) ÅCell parameters from 6479 reflections
b = 10.9937 (5) Åθ = 2.7–35.0°
c = 17.9027 (8) ŵ = 2.15 mm1
β = 92.442 (3)°T = 100 K
V = 2039.37 (15) Å3Plate, red
Z = 40.49 × 0.31 × 0.11 mm

Data collection

Bruker SMART APEX2 CCD area-detector diffractometer6479 independent reflections
Radiation source: fine-focus sealed tube4811 reflections with I > 2σ(I)
graphiteRint = 0.043
Detector resolution: 8.33 pixels mm-1θmax = 35.0°, θmin = 2.7°
ω scansh = −16→16
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −17→14
Tmin = 0.414, Tmax = 0.787l = −28→19
13146 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.097w = 1/[σ2(Fo2) + (0.022P)2 + 0.6614P] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
6479 reflectionsΔρmax = 1.01 e Å3
265 parametersΔρmin = −1.38 e Å3
2 restraintsAbsolute structure: Flack (1983), 1997 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.024 (7)

Special details

Experimental. The low-temperature data was collected with the Oxford Cryosystem Cobra low-temperature attachment.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.36598 (3)0.77042 (3)0.68824 (2)0.02730 (9)
S10.98401 (6)0.80532 (7)0.66253 (5)0.01869 (16)
O11.0332 (2)0.6820 (2)0.65917 (15)0.0260 (5)
O21.0299 (2)0.8717 (2)0.72875 (14)0.0264 (5)
O30.9990 (2)0.8740 (2)0.59428 (14)0.0275 (5)
N10.1505 (2)0.3126 (2)0.93738 (17)0.0235 (6)
N21.1241 (3)0.6429 (3)0.91479 (17)0.0288 (6)
C10.3252 (3)0.3957 (3)1.0096 (2)0.0267 (7)
H1A0.35950.42151.05570.032*
C20.2023 (3)0.3507 (3)1.0041 (2)0.0248 (7)
H2A0.15380.34621.04660.030*
C30.2213 (3)0.3179 (3)0.8760 (2)0.0230 (7)
H3A0.18540.29080.83050.028*
C40.3442 (3)0.3621 (3)0.8789 (2)0.0238 (7)
H4A0.39090.36460.83570.029*
C50.4003 (3)0.4034 (3)0.9463 (2)0.0231 (7)
C60.5317 (3)0.4507 (3)0.9554 (2)0.0265 (8)
H6A0.56090.47491.00290.032*
C70.6126 (3)0.4612 (3)0.8992 (2)0.0231 (7)
H7A0.58210.43730.85190.028*
C80.7443 (3)0.5069 (3)0.9063 (2)0.0238 (7)
C90.8152 (3)0.5165 (3)0.84225 (19)0.0224 (7)
H9A0.77750.49170.79670.027*
C100.9406 (3)0.5618 (3)0.8439 (2)0.0229 (7)
H10A0.98420.56900.79980.027*
C111.0015 (3)0.5969 (3)0.9124 (2)0.0225 (7)
C120.9307 (3)0.5851 (3)0.9777 (2)0.0260 (7)
H12A0.96900.60661.02370.031*
C130.8055 (3)0.5421 (3)0.9742 (2)0.0250 (7)
H13A0.76080.53631.01790.030*
C140.0170 (3)0.2686 (3)0.9326 (2)0.0298 (8)
H14A0.00390.21970.88850.045*
H14B−0.04090.33670.93020.045*
H14C0.00070.22060.97600.045*
C151.1928 (3)0.6611 (3)0.8465 (2)0.0295 (8)
H15A1.14040.70840.81190.044*
H15B1.21100.58350.82460.044*
H15C1.27220.70320.85790.044*
C161.1872 (3)0.6788 (3)0.9852 (2)0.0304 (8)
H16A1.17820.61511.02130.046*
H16B1.14800.75181.00300.046*
H16C1.27710.69320.97810.046*
C170.8138 (3)0.7927 (3)0.6710 (2)0.0176 (6)
C180.7402 (3)0.8978 (3)0.6780 (2)0.0192 (7)
H18A0.78090.97320.67970.023*
C190.6080 (3)0.8917 (3)0.6823 (2)0.0209 (7)
H19A0.55940.96240.68580.025*
C200.5489 (3)0.7790 (3)0.6814 (2)0.0207 (6)
C210.6187 (3)0.6722 (3)0.6750 (2)0.0220 (7)
H21A0.57740.59700.67430.026*
C220.7524 (3)0.6800 (3)0.6696 (2)0.0191 (7)
H22A0.80080.60940.66490.023*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.01676 (11)0.03575 (17)0.02948 (18)−0.00106 (18)0.00199 (10)−0.0056 (2)
S10.0163 (3)0.0187 (4)0.0211 (4)0.0010 (2)0.0013 (3)0.0020 (3)
O10.0167 (9)0.0242 (12)0.0375 (16)−0.0007 (8)0.0055 (10)0.0016 (11)
O20.0198 (10)0.0342 (13)0.0251 (14)−0.0022 (9)−0.0010 (9)−0.0054 (11)
O30.0247 (10)0.0308 (13)0.0270 (14)−0.0007 (9)0.0021 (9)0.0068 (10)
N10.0221 (12)0.0201 (13)0.0287 (18)0.0065 (10)0.0035 (12)0.0037 (12)
N20.0305 (13)0.0347 (16)0.0212 (16)−0.0087 (12)0.0001 (12)−0.0013 (14)
C10.0304 (15)0.0215 (16)0.028 (2)0.0070 (12)−0.0003 (14)−0.0023 (14)
C20.0302 (15)0.0235 (16)0.0210 (19)0.0080 (12)0.0049 (14)0.0013 (14)
C30.0269 (14)0.0220 (16)0.0197 (19)0.0052 (12)−0.0011 (13)0.0028 (13)
C40.0249 (14)0.0245 (16)0.0223 (19)0.0063 (12)0.0044 (12)0.0034 (14)
C50.0235 (13)0.0176 (14)0.0285 (19)0.0062 (11)0.0033 (13)0.0004 (14)
C60.0229 (14)0.0271 (17)0.030 (2)0.0064 (12)0.0001 (14)−0.0039 (15)
C70.0247 (14)0.0203 (15)0.0240 (19)0.0036 (11)−0.0007 (13)−0.0008 (13)
C80.0245 (14)0.0215 (15)0.025 (2)0.0047 (11)0.0022 (13)−0.0003 (14)
C90.0281 (14)0.0203 (15)0.0185 (18)0.0035 (11)−0.0031 (13)−0.0020 (13)
C100.0265 (14)0.0208 (15)0.0214 (19)0.0036 (11)0.0017 (13)−0.0004 (13)
C110.0284 (14)0.0164 (14)0.0228 (19)0.0018 (11)0.0008 (13)0.0023 (13)
C120.0308 (15)0.0245 (17)0.0224 (19)0.0005 (12)−0.0014 (14)−0.0009 (14)
C130.0277 (15)0.0258 (16)0.0217 (19)0.0003 (12)0.0023 (13)−0.0035 (14)
C140.0250 (14)0.0274 (16)0.037 (2)0.0018 (13)0.0038 (14)0.0079 (16)
C150.0299 (15)0.0315 (18)0.027 (2)−0.0053 (13)−0.0018 (14)0.0038 (16)
C160.0354 (17)0.0309 (18)0.024 (2)−0.0066 (14)−0.0055 (15)−0.0007 (16)
C170.0174 (12)0.0168 (14)0.0186 (18)0.0008 (10)0.0004 (12)−0.0001 (12)
C180.0182 (12)0.0177 (16)0.0215 (19)−0.0021 (11)0.0002 (12)−0.0015 (13)
C190.0229 (14)0.0202 (16)0.0197 (18)0.0029 (11)0.0012 (12)−0.0028 (13)
C200.0167 (12)0.0293 (16)0.0160 (17)0.0013 (12)0.0003 (11)−0.0020 (14)
C210.0230 (14)0.0181 (16)0.025 (2)−0.0009 (11)−0.0009 (13)−0.0004 (14)
C220.0226 (14)0.0150 (15)0.0197 (19)0.0036 (11)−0.0001 (13)0.0039 (13)

Geometric parameters (Å, °)

Br1—C201.909 (3)C9—H9A0.9300
S1—O31.450 (3)C10—C111.409 (5)
S1—O11.451 (2)C10—H10A0.9300
S1—O21.455 (2)C11—C121.413 (5)
S1—C171.784 (3)C12—C131.380 (4)
N1—C31.349 (4)C12—H12A0.9300
N1—C21.355 (4)C13—H13A0.9300
N1—C141.466 (4)C14—H14A0.9600
N2—C111.367 (4)C14—H14B0.9600
N2—C161.451 (4)C14—H14C0.9600
N2—C151.455 (5)C15—H15A0.9600
C1—C21.367 (5)C15—H15B0.9600
C1—C51.405 (5)C15—H15C0.9600
C1—H1A0.9300C16—H16A0.9600
C2—H2A0.9300C16—H16B0.9600
C3—C41.363 (4)C16—H16C0.9600
C3—H3A0.9300C17—C181.392 (4)
C4—C51.393 (5)C17—C221.393 (4)
C4—H4A0.9300C18—C191.378 (4)
C5—C61.461 (4)C18—H18A0.9300
C6—C71.342 (5)C19—C201.382 (5)
C6—H6A0.9300C19—H19A0.9300
C7—C81.455 (4)C20—C211.387 (5)
C7—H7A0.9300C21—C221.396 (4)
C8—C91.393 (5)C21—H21A0.9300
C8—C131.402 (5)C22—H22A0.9300
C9—C101.391 (4)
O3—S1—O1113.63 (15)C10—C11—C12117.7 (3)
O3—S1—O2112.50 (15)C13—C12—C11121.0 (3)
O1—S1—O2113.53 (14)C13—C12—H12A119.5
O3—S1—C17104.72 (14)C11—C12—H12A119.5
O1—S1—C17106.37 (13)C12—C13—C8121.6 (3)
O2—S1—C17105.09 (15)C12—C13—H13A119.2
C3—N1—C2119.8 (3)C8—C13—H13A119.2
C3—N1—C14120.8 (3)N1—C14—H14A109.5
C2—N1—C14119.4 (3)N1—C14—H14B109.5
C11—N2—C16120.8 (3)H14A—C14—H14B109.5
C11—N2—C15120.8 (3)N1—C14—H14C109.5
C16—N2—C15118.3 (3)H14A—C14—H14C109.5
C2—C1—C5120.8 (3)H14B—C14—H14C109.5
C2—C1—H1A119.6N2—C15—H15A109.5
C5—C1—H1A119.6N2—C15—H15B109.5
N1—C2—C1120.5 (3)H15A—C15—H15B109.5
N1—C2—H2A119.7N2—C15—H15C109.5
C1—C2—H2A119.7H15A—C15—H15C109.5
N1—C3—C4121.6 (3)H15B—C15—H15C109.5
N1—C3—H3A119.2N2—C16—H16A109.5
C4—C3—H3A119.2N2—C16—H16B109.5
C3—C4—C5120.3 (3)H16A—C16—H16B109.5
C3—C4—H4A119.8N2—C16—H16C109.5
C5—C4—H4A119.8H16A—C16—H16C109.5
C4—C5—C1117.0 (3)H16B—C16—H16C109.5
C4—C5—C6124.4 (3)C18—C17—C22119.2 (3)
C1—C5—C6118.6 (3)C18—C17—S1119.4 (2)
C7—C6—C5123.9 (3)C22—C17—S1121.4 (2)
C7—C6—H6A118.1C19—C18—C17121.0 (3)
C5—C6—H6A118.1C19—C18—H18A119.5
C6—C7—C8125.4 (3)C17—C18—H18A119.5
C6—C7—H7A117.3C18—C19—C20119.0 (3)
C8—C7—H7A117.3C18—C19—H19A120.5
C9—C8—C13117.2 (3)C20—C19—H19A120.5
C9—C8—C7118.8 (3)C19—C20—C21121.8 (3)
C13—C8—C7124.0 (3)C19—C20—Br1119.0 (2)
C10—C9—C8122.4 (3)C21—C20—Br1119.1 (2)
C10—C9—H9A118.8C20—C21—C22118.5 (3)
C8—C9—H9A118.8C20—C21—H21A120.8
C9—C10—C11120.0 (3)C22—C21—H21A120.8
C9—C10—H10A120.0C17—C22—C21120.5 (3)
C11—C10—H10A120.0C17—C22—H22A119.7
N2—C11—C10120.7 (3)C21—C22—H22A119.7
N2—C11—C12121.6 (3)
C3—N1—C2—C10.7 (5)C9—C10—C11—C12−0.5 (4)
C14—N1—C2—C1−177.9 (3)N2—C11—C12—C13177.9 (3)
C5—C1—C2—N10.0 (5)C10—C11—C12—C13−0.8 (5)
C2—N1—C3—C4−0.7 (5)C11—C12—C13—C80.9 (5)
C14—N1—C3—C4177.9 (3)C9—C8—C13—C120.3 (5)
N1—C3—C4—C50.0 (5)C7—C8—C13—C12−179.9 (3)
C3—C4—C5—C10.7 (4)O3—S1—C17—C18−61.5 (3)
C3—C4—C5—C6179.1 (3)O1—S1—C17—C18177.9 (3)
C2—C1—C5—C4−0.7 (5)O2—S1—C17—C1857.2 (3)
C2—C1—C5—C6−179.2 (3)O3—S1—C17—C22117.4 (3)
C4—C5—C6—C71.0 (5)O1—S1—C17—C22−3.2 (3)
C1—C5—C6—C7179.4 (3)O2—S1—C17—C22−123.8 (3)
C5—C6—C7—C8−179.5 (3)C22—C17—C18—C19−1.0 (5)
C6—C7—C8—C9−177.8 (3)S1—C17—C18—C19178.0 (3)
C6—C7—C8—C132.4 (5)C17—C18—C19—C201.5 (5)
C13—C8—C9—C10−1.7 (5)C18—C19—C20—C21−1.1 (5)
C7—C8—C9—C10178.5 (3)C18—C19—C20—Br1179.5 (3)
C8—C9—C10—C111.8 (5)C19—C20—C21—C220.2 (5)
C16—N2—C11—C10−179.9 (3)Br1—C20—C21—C22179.6 (3)
C15—N2—C11—C102.3 (5)C18—C17—C22—C210.1 (5)
C16—N2—C11—C121.5 (5)S1—C17—C22—C21−178.9 (3)
C15—N2—C11—C12−176.4 (3)C20—C21—C22—C170.4 (5)
C9—C10—C11—N2−179.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.932.443.366 (4)175
C4—H4A···O2ii0.932.453.375 (4)175
C6—H6A···O3iii0.932.443.175 (4)136
C7—H7A···O2ii0.932.363.285 (4)173
C14—H14C···O3i0.962.363.304 (4)168
C15—H15A···O20.962.573.515 (4)168
C19—H19A···O1iv0.932.473.306 (4)149
C3—H3A···Cg3ii0.932.763.601 (4)151
C14—H14B···Cg2v0.962.553.468 (4)161
C16—H16A···Cg3vi0.932.983.446 (4)111

Symmetry codes: (i) x−1, −y+1, z+1/2; (ii) x−1/2, y−1/2, z; (iii) x−1/2, −y+3/2, z+1/2; (iv) x−1/2, y+1/2, z; (v) x−1, y, z; (vi) x+1/2, −y+3/2, z+1/2.

Footnotes

1This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2136).

References

  • Adachi, H., Takanishi, Y., Yabuzaki, J., Mori, Y. & Sasaki, T. (1999). J. Cryst. Growth, 158/159, 568–571.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chantrapromma, S., Kobkeatthawin, T., Chanawanno, K., Karalai, C. & Fun, H.-K. (2008). Acta Cryst. E64, o876–o877. [PMC free article] [PubMed]
  • Chantrapromma, S., Ruanwas, P., Fun, H.-K. & Patil, P. S. (2006). Acta Cryst. E62, o5494–o5496.
  • Chia, W.-L., Chen, C.-N. & Sheu, H.-J. (1995). Mater. Res. Bull.30, 1421–1430.
  • Dittrich, Ph., Bartlome, R., Montemezzani, G. & Günter, P. (2003). Appl. Surf. Sci.220, 88–95.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Jagannathan, K., Kalainathan, S., Gnanasekaran, T., Vijayan, N. & Bhagavannarayana, G. (2007). Cryst. Growth Des.7, 859–863.
  • Nogi, K., Anwar, U., Tsuji, K., Duan, X.-M., Okada, S., Oikawa, H., Matsuda, H. & Nakanishi, H. (2000). Nonlinear Optics, 24, 35–40.
  • Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.
  • Otero, M., Herranz, M. A., Seoane, C., Martín, N., Garín, J., Orduna, J., Alcalá, R. & Villacampa, B. (2002). Tetrahedron, 58, 7463–7475.
  • Rahman, A. A., Razak, I. A., Fun, H.-K., Saenee, P., Jindawong, B., Chantrapromma, S. & Karalai, C. (2003). Acta Cryst. E59, o1798–o1800.
  • Sato, N., Rikukawa, M., Sanui, K. & Ogata, N. (1999). Synth. Met.101, 132–133.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2003). J. Appl. Cryst.36, 7–13.
  • Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des.7, 83–86.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography